首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the fabrication and application of an electrochemical carbon monoxide (CO) gas sensor based on the deposition of Pt nanoparticles on a screen‐printed edge band ultramicroelectrode (SPUME) with Nafion as the solid polymer electrolyte. Homogeneous size and distribution of Pt nanoparticles is stably deposited on the SPUME without either protective or capped agents. The edge diffusion effect at the SPUME, to even out the generation rate of hydrogen and to speed up the mass transfer of Pt solution, is believed to play a key role in achieving the deposition result. The obvious advantage of the proposed ultramicroelectrode system is that no supporting electrolyte (i.e., internal electrolyte) is required in the sensor scheme. The current–time curve recorded under conditions of +0.45 V vs. pseudo Ag reference electrode and various CO concentrations suggests that current response depends linearly on CO concentration up to 1000 ppm (correlation coefficient=0.994) with a sensitivity of 3.76 nA/(ppm?cm2). This report demonstrates potential application of the disposable CO gas sensor.  相似文献   

2.
A series of nitrogen‐tethered allenynes (‘5‐aza‐1,2‐dien‐7‐ynes’) 1 were transformed to the corresponding 3‐acyl‐4‐alkenylpyrrolidines 3 when treated with a catalytic amount of PtCl2 in MeOH at 70°. Initial Pt‐promoted cyclization forms a nonclassical carbocationic intermediate. In contrast to the cycloisomerization in toluene, which produced the bicyclic cyclobutenes 2 , the intermediate is intercepted by addition of an oxygen nucleophile to achieve the formal hydrative cyclization.  相似文献   

3.
A simple and novel flow‐injection chemiluminescence (FI‐CL) method was established for the determination of 2‐Methoxyestradiol (2‐ME) in pharmaceutical preparations and biological fluids. The method was based on the significant enhancement of the CL from the KMnO4‐Na2SO3 reaction by 2‐ME in acidic medium. Under optimized conditions, the CL intensity was correlated linearly with concentration of 2‐ME in the range of 5.0 × 10?8‐5.0 × 10?6 M (r = 0.9995). The detection limit (3σ) of 2‐ME was 7.5 × 10?9 M and the relative standard deviation was 0.8% at 5.0 × 10?7 M 2‐ME (n = 8). The proposed method was successfully applied for the flow‐injection CL determination of 2‐ME in pharmaceutical preparations and biological fluids with the recoveries from 92.4 to 106.8%. The possible CL reaction mechanism was also discussed briefly.  相似文献   

4.
The composite electrode of platinum‐modified polyaniline film is formed in 0.5 M H2SO4 + 3 mM H2PtCl6 solution by cyclic potential or constant potential deposition of platinum particles in polyaniline film. To make a comparison, the polyaniline film with the same initial thickness and structure is also treated with the cyclic potential or constant potential polarization in 0.5 M H2SO4 solution. The electrochemical impedance spectroscopy (EIS) of the composite electrode of platinum‐modified polyaniline film is studied in sulfuric acid solution and compared with the EIS of the polyaniline film without platinum dispersion. The results show that the different modes of potential polarization affect greatly the nature and distribution of the platinum particles, instead of the structure of the polyaniline film (matrix). The electrode reaction kinetics and mass transport process parameters involving charge transfer resistance (Rct), double layer capacitance (Cdl), constant phase elements (CPE) and Warburg impedance in platinum substrate/platinum‐modified polyaniline film/solution interface are discussed on the basis of the interpretation of the characteristic impedance spectra and connected to the electrocatalytic activity on the oxidation of methanol molecules.  相似文献   

5.
Au porous nanotubes (PNTs) were synthesized by a templating technique that involves the chemical synthesis of Ag nanowire precursors, electroless surface modification with Au, and selective etching. A subsequent galvanic replacement reaction between [PtCl6]2? and residual Ag generates Ptdecorated Au porous nanotubes (Pt/Au PNTs), which represents a new type of selfsustained high surface area electrocatalysts with ultralow Pt loading. Structural characterizations with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Xray powder diffraction (XRD) reveal a novel nanoarchitecture with multimodal open porosity and excellent structural continuity and integrity. Cyclic voltammetry (CV) demonstrates that these Pt/Au PNTs possess very high electrocatalytic activity toward formic acid oxidation with enhanced tolerance to CO poisoning.  相似文献   

6.
A powerful new strategy for the fabrication of high‐density RNA arrays is described. A high‐density DNA array is fabricated by standard photolithographic methods, the surface‐bound DNA molecules are enzymatically copied into their RNA complements from a surface‐bound RNA primer, and the DNA templates are enzymatically destroyed, leaving behind the desired RNA array. The strategy is compatible with 2′‐fluoro‐modified (2′F) ribonucleoside triphosphates (rNTPs), which may be included in the polymerase extension reaction to impart nuclease resistance and other desirable characteristics to the synthesized RNAs. The use and fidelity of the arrays are explored with DNA hybridization, DNAzyme cleavage, and nuclease digestion experiments.  相似文献   

7.
The surface orientation of Pt‐group metals determines the kind of organic species (such as CO, benzene and ethene) that will adsorb on them as well as the prevailing reaction channels. Pt and Pd as well as (sub)monolayers of them on Au are compared, including mono‐ and multiatomic rows of Pd on stepped Au surfaces. In general, Pd is less active for oxidation or hydrogenation of the adsorbates. Desorption of the intact molecule is favored because of a lower adsorption strength.  相似文献   

8.
9.
10.
《Electroanalysis》2005,17(1):15-27
The rapid development in nanomaterials and nanotechnologies has provided many new opportunities for electroanalysis. We review our recent results on the fabrication and electroanalytical applications of nanoelectrode arrays based on vertically aligned multi‐walled carbon nanotubes (MWCNTs). A bottom‐up approach is demonstrated, which is compatible with Si microfabrication processes. MWCNTs are encapsulated in SiO2 matrix leaving only the very end exposed to form inlaid nanoelectrode arrays. The electrical and electrochemical properties have been characterized, showing well‐defined quasireversible nanoelectrode behavior. Ultrasensitive detection of small redox molecules in bulk solutions as well as immobilized at the MWCNT ends is demonstrated. A label‐free affinity‐based DNA sensor has shown extremely high sensitivity approaching that of fluorescence techniques. This platform can be integrated with microelectronics and microfluidics for fully automated microchips.  相似文献   

11.
Online restricted access media with liquid chromatography and tandem mass spectrometry for the direct analysis of small molecules in biological fluids represents an interesting alternative to time‐demanding traditional sample preparation techniques. In this study, important considerations concerning the development of a restricted access media with liquid chromatography and tandem mass spectrometry method for the analysis of dansylated estrogens in biological matrix are presented. Parameters influencing peak tailing and trapping efficiency were evaluated. The key factors included the ion strength of the mobile phase, a loading flow rate of the sample onto the trap column, and selection of a proper stationary phase of the trap column for a given set of analytes. These parameters have proven to be essential for minimizing any unwanted chromatographic peak tailing. The bulk derivatization of the analytes in the biological fluids and its relationship to the observed matrix effects was evaluated as well.  相似文献   

12.
Protein precipitation and centrifugal filtration are well‐established methods for concentrating and purifying peptides with a low relative molecular mass (Mr) from human blood plasma before proteomic and peptidomic studies using high‐performance separation techniques, but there is little information on peptide recoveries. Here, we evaluate acetonitrile precipitation followed by a range of centrifugal filtration conditions for the analysis of low Mr peptides in human blood plasma before CE–MS and SPE coupled online to CE–MS. Three opioid peptides were used as model compounds, that is, dynorphin A 1–7, endomorphin 1, and methionine enkephalin and 3, 10, and 30 K Mr cut‐off cellulose acetate filters (Amicon® Ultra‐0.5) and 10 K Mr cut‐off polyethersulfone filters (Vivaspin® 500) were studied. Unexpectedly, recoveries and repeatability were only optimum after passivating the 10 K Mr cut‐off cellulose acetate filters with PEG to avoid peptide adsorption on the inner walls of the plastic sample reservoir.  相似文献   

13.
Sodium nitroprusside (NP), a commercial vasodilator, can be pre‐concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% poly‐L ‐lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B‐R buffer pH 4.0, were 1×10?6 to 2×10?5 mol L?1 and 1×10?7 mol L?1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95–97% without any pre treatment.  相似文献   

14.
Pt µdisc electrodes have been modified by mesoporous organosilica thin films by electrochemically assisted self‐assembly (EASA) of mercaptopropyltrimethoxysilane (MPTMS), tetraethoxysilane (TEOS), and the surfactant cetyltrimethylammonium bromide (CTAB). The EASA process involves the generation of hydroxide ions at the electrode/solution interface, upon the application of a cathodic current density, leading to TEOS and MPTMS polycondensation around the CTAB template and concomitant growing of a thiol‐functionalized mesoporous film onto the electrode surface. The experimental conditions (current density, deposition time, silane concentration and molar ratio between surfactant template and silane) were optimised to form a thin and permeable film likely to be used in preconcentration electroanalysis. The morphology of the film electrodes were characterised by scanning electron microscopy. The permeability properties of the modified Pt µdisc electrodes have been evidenced by cyclic voltammetry using Ru(NH3)63+ as a redox probe. The best parameters identified for the film preparation are a current density of ? 8 mA cm?2 applied for 15 s in a solution containing 110 mM of hydrolysed silane precursors and 70.4 mM of CTAB. Pt µdisc electrodes modified in these conditions were used for the open‐circuit preconcentration of Hg(II) species prior to their detection by anodic stripping voltammetry in a mercury‐free solution. In the optimized conditions, a sensitivity of 14.3 mA cm?2 µM?1 was obtained for the 0.02–0.08 µM concentration range. The analytical performance of such organosilica films could decay by up to two orders of magnitude for the materials prepared in conditions other than the optimized ones, highlighting the need for a fine control of the deposition parameters to elaborate sensors based on such modified ultramicroelectrodes.  相似文献   

15.
A highly sensitive automated sequential‐injection chemiluminescence (SIA‐CL) method for determination of glucosamine sulphate (GLS) was developed. The goal of the present work is the evaluation of the enhancement effect of the investigated drug glucosamine sulphate on the chemiluminescence reaction between luminol and H2O2 in alkaline medium of 1.0 × 10?2 mol L?1 sodium hydroxide at pH 11. The experimental conditions affecting the CL reaction such as the sequence of the reagents, concentrations, flow rate and aspirated volumes of reactants were systematically investigated and optimized. Under optimum conditions 50 μL of 1.0 × 10?3 mol L?1 luminol, 30 μL of a GLS test solution and 50 μL of 1.0 × 10?2 mol L?1 H2O2 were used and the luminescing zone was pushed into the detector at a flow rate 100 μL s?1. The proposed method recorded high sensitivity, accuracy and simplicity that could be clarified as linear concentration range 1.0‐2000 ng mL?1 with rectilinear part (r = 0.9992, n = 9) and limit of detection 0.3 ng mL?1, along with relative standard deviation 1.3%. It was found that the developed method can be used directly to determine the investigated drug GLS in its pharmaceutical dosage forms and in spiked serum and urine by diluting the samples for a 1000 fold. The obtained results were statistically analyzed and compared with those obtained by the reported method.  相似文献   

16.
17.
Optimized facile syntheses and highly desirable spectroscopic properties of two isomorphic fluorescent pyrimidines, comprising a 1,2,4‐triazine motif conjugated to a thiophene ( 1 a ) or a furan ( 1 b ), are described. Although structurally related to their 5‐modified uridine counterparts, these modified 6‐aza‐uridines reveal dramatically improved fluorescence properties and a remarkable sensitivity to polarity and pH changes. The thiophene derivative 1 a has an absorption maximum around 335 nm, which upon excitation yields visible emission with a polarity‐sensitive maximum and fluorescence quantum yield ranging from 415 nm (Φ=0.8) to 455 nm (Φ=0.2) in dioxane and water, respectively. Nucleoside 1 a also displays susceptibility to acidity. Correlating emission intensity and solution pH yields a pKa value of 6.7–6.9, reasonably close to physiological pH values. The results illustrate that highly sought‐after fluorescence features (brightness and responsiveness) are not necessarily the trait of large fluorophores alone, but can be observed with probes that meet stringent isomorphic design criteria.  相似文献   

18.
19.
One‐nucleotide differences in microRNAs (miRNAs) can be discriminated in an assay based on a branched rolling‐circle amplification (BRCA) reaction and fluorescence quantification. With the proposed method miRNA can be detected at concentrations as low as 10 fM , and the miRNA in a total RNA sample of a few nanograms can be determined.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号