首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(16):2559-2570
A sensitive electrochemical DNA biosensor based on a mixed monolayer structure self-assembled at nanoporous gold (NPG) electrode surface was prepared for Escherichia coli (E. coli) detection. The NPG was fabricated on gold electrode, onto which thiolated oligonucleotides (SH-DNA) and mercaptohexanol (MCH) were covalently linked forming a mixed self-assembled monolayer (SAM). The hybridization between the SH-DNA/MCH modified biosensor and E. coli DNA was monitored with differential pulse voltammetry measurement using methylene blue (MB) as the hybridization indicator. The biosensor can detect 1 × 10?12 M DNA target and 50 cfu/μL E. coli without any nucleic acid amplification steps. The detection limit was lowered to 50 cfu/mL after 5.0 h of incubation.  相似文献   

2.
以室温固相合成法制备纳米MnO2,通过壳聚糖(CHIT)的成膜效应将纳米MnO2固定在玻碳电极表面。DNA在MnO2/CHIT膜上的固定和杂交通过循环伏安和电化学交流阻抗进行表征。以电化学阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测大肠杆菌基因片段的线性范围为2.0×10^-11 ~2.0×10^-6mol/L,检出限为1.0×10^-12mol/L。  相似文献   

3.
Electrochemical biosensors have made outstanding achievements in recent years. However, the single pursuit of sensitivity and accuracy sometimes cannot meet the detection requirements and achieve high-efficiency measurements. Therefore, no-washing biosensors have more practical advantages. In this work, a disposable point-of-care (POC) electrochemical biosensor was designed for the sensitive and fast detection of neuron-specific enolase (NSE). Fe3O4 and CuS nanoparticles were used as the substrate material for capturing Ab1 and the signal probe for labeling Ab2 respectively. The disposable syringe filter was introduced into the determination procedure for simple sample separation, which easily realized no-washing detection. Due to the syringe filters with 200 nm pore diameter could only allow the small nanoparticles of CuS−Ab2 pass through, the large-sized immunocomplex of Fe3O4−Ab1/NSE/CuS−Ab2 were blocked on the membrane. The uncombined CuS−Ab2 particles were pushed out from the syringe and would occur electron transfer between Cu2+ and Cu+ to generate a current signal detected by the Au electrode. Under optimal conditions, the no-washing biosensor shows a wide linear concentration range (100 fg mL−1∼50 ng mL−1) with the limit of detection of 33 fg mL−1 (S/N=3). Additionally, the biosensor exhibited excellent selectivity, storage stability and reproducibility. The outstanding advantages of the no-washing biosensor make it more suitable for POC testing.  相似文献   

4.
《Analytical letters》2012,45(9):2155-2166
Abstract

A piezoelectric crystal biosensor system was applied to the detection of Escherichia coli. the system consists of an oscillator, a frequency counter, a flow cell and a modified piezoelectric crystal. Anti-E. coli antibody is immobilized on the surface of the crystal. It is used as an E. coli detection by measuring its resonant frequency shift due to a mass change caused by specific binding of the micro organisms to the surface. the frequency shift correlates with an E. coli concentration in the range of 106?108 cells·cm?3. the resonant frequency shift is increased by further treatment to bind micro-particles modified with anti-E. coli antibody. This method allows us to improve the determination limit to 105 cells · cm?3.  相似文献   

5.
基于拮抗作用检测除草剂的类囊体膜生物传感器研究   总被引:10,自引:0,他引:10  
利用除草剂对植物类囊体束缚酶分解过氧化氢的拮抗作用,研制了一种快速检测痕量除草剂的电化学生物传感器.将植物类囊体用聚乙烯醇-苯乙烯吡啶(PVA-SbQ)光敏聚合剂在紫外光诱导下产生大分子网状结构进行包埋,制成生物敏感膜,并固定在铂电极表面.根据加入除草剂时类囊体膜束缚酶分解过氧化氢活性的变化,对除草剂进行测定.在含有1×10-3mol/LNaCl,5×10-3mol/LMgCl2和0.01mol/LH2O2的Tris-HCl缓冲溶液(pH=7.4)中,基于测量0.65V处H2O2氧化电流的变化,可以对下列浓度的除草剂进行定量检测:百草枯3×10-9~1.5×10-7mol/L,敌草龙1×10-8~3×10-7mol/L,扑草净4×10-8~3×10-6mol/L,阿特拉津1×10-7~5×10-6mol/L,莠灭净1×10-7~5×10-6mol/L.利用PVA-SbQ光聚合膜固定类囊体,能够使酶的活性在低温下保持数月.  相似文献   

6.
以纳米MnO2作为适体固定的构建平台,制备了一种基于核酸适体的新型腺苷电化学生物传感器.固定于电极表面的适体探针与目标腺苷杂交后使电极界面的结构发生改变,通过[Fe(CN)6]3-/4-氧化还原探针监测传感器表面电子传递电阻的变化,以此作为检测信号进行腺苷的免标记检测.表面电子传递电阻的变化值与腺苷浓度的对数在1.0×...  相似文献   

7.
Nanomolar concentrations of thrombin were electrochemically monitored using heterogeneous switch‐on and homogeneous switch‐off approaches that incorporated ferrocenyl aptamers. For the first time, the heterogeneous approach was coupled to a glucose/glucose oxidase (GOx) amplification‐regeneration system which increased its sensitivity by 2 folds with detection limits of 4.3 nM and 2.5 nM in the absence and presence of glucose/GOx, respectively. We also present a new homogeneous system involving the ferrocenyl aptamer binding thrombin in solution causing a significant decrease in its diffusion coefficient. Thus the ferrocene anodic current decreased at an unmodified gold electrode with detection limit of 3.9 nM and 12 times larger linear range than the heterogeneous method.  相似文献   

8.
《Electroanalysis》2017,29(11):2665-2671
Detection of Enterotoxigenic Escherichia coli in various biological samples has tremendous importance in human health. In this direction, we have designed a label free electrochemical biosensor for highly selective detection of Escherichia coli through detecting ST gene. The ability of sensor probe to detect STG was confirmed using polymerase chain reaction. The biosensor was fabricated based on STG specific probes immobilized on platinum nanoparticles chitosan nanocomposite on screen printed carbon electrode, which was characterized by cyclic voltammetry, transmission electron microscopy, and fourier transform infrared spectroscopy. A highly sensitive label free sensing was achieved by analyzing STG hybridization using electrochemical impedance spectroscopy (EIS) technique. The EIS analysis showed a significant increase in charge transfer resistance after STG interaction with the highly selective ssDNA probe immobilized on the nanocomposite film. The increase in charge transfer resistance was evaluated for varying concentrations of STG, which shows a dynamic range between 1.0×10−12 and 1.0×10−4 with the detection limit of 3.6×10−14 M (RSD<4.5 %). The regeneration of sensor probe was also studied and interference due to non‐target sequences was evaluated to ensure the selectivity of the designed sensor. The practical applicability of sensor probe was also analyzed by detecting the STG from the bacteria present in surface water.  相似文献   

9.
适配体是通过指数富集系统进化技术(SELEX)体外筛选得到的一类能够特异性地结合小分子物质、蛋白,甚至整个细胞的寡核苷酸序列.由于具有制备简便、易于修饰、稳定性好等特点,适配体已广泛应用于构建生物传感器,实现对病原微生物的识别和检测.本文在阐述适配体基本原理的基础之上,结合近年来病原微生物适配体研究领域的最新研究成果,综述以病原微生物为目标的适配体筛选技术的最新进展;列举目前已经筛选获得的病原微生物(原生生物、病毒、细菌)适配体;综述适配体生物传感器在病原微生物检测中的应用.并展望了适配体生物传感器在病原微生物检测领域的发展趋势.  相似文献   

10.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

11.
A biosensor based on conductive poly(pyrrole‐co‐pyrrole‐2‐carboxylic acid) [Poly(Py‐co‐PyCOOH)] copolymer film coated gold electrode was developed for the quantitative phosphate determination. Enzyme pyruvate oxidase was immobilized chemically via the functional carboxylated groups of the copolymer. The potential to be applied which is deficiency of phosphate biosensor studies for precise phosphate detection was clarified by using differential pulse voltammetry technique. Performance of the sensing ability of the biosensor was improved by optimizing cofactor/cosubstrate concentrations, polymeric film density and pH. The biosensor showed a linearity up to phosphate concentration of 5 mM, operational stability with a relative standard deviation (RSD) of 0.07 % (n=7) and accuracy of 101 % at ?0.15 V (vs. Ag/AgCl). Detection limit (LOD) and sensitivity were calculated to be 13.3 μM and 5.4 μA mM?1 cm?2, respectively by preserving 50 % of its initial response at the end of 30 days. It's performance was tested to determine phosphate concentrations in two streams of Zonguldak City in Turkey. Accuracy of phosphate measurement in stream water was found to be 91 %.  相似文献   

12.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

13.
We report a novel, simple, rapid and sensitive electrochemical method for the determination of sulcotrione, a member of the relatively new class of triketone herbicides, using differential pulse voltammetry on a glassy carbon electrode. Its electrochemical behavior including influences of electrolyte composition, pH and scan rate was studied to select optimal experimental parameters for its determination. In Britton? Robinson buffer at pH 3 sulcotrione provided a well‐defined reduction peak at ?0.84 V (vs. Ag/AgCl electrode), with good repeatability (relative standard deviation of 2.3 % for 8 measurements at 10 µM concentration level). With optimized parameters differential pulse voltammetry rendered two linear concentration ranges from 0.2 to 2 µM and from 2 to 50 µM with a detection limit of 0.05 µM. The proposed procedure was successfully applied to the determination of sulcotrione in spiked river water samples with satisfactory recoveries (93–109 %). The developed method may represent a simple, rapid and sensitive alternative to highly toxic mercury electrodes and chromatographic methods.  相似文献   

14.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

15.
毛伟伟  魏小红  尤金坤  张红艳 《化学通报》2020,83(12):1081-1088
赭曲霉毒素(Ochratoxin)是一类主要由曲霉菌和青霉菌产生的次生代谢产物,其中赭曲霉毒素A(OTA)的毒性最强。OTA相当稳定,常规的食品加工难以去除,若摄入受OTA污染的食品或药物会对人类造成严重的危害。实现对OTA的灵敏和快速检测是及早发现和处置OTA污染的关键。近年来,核酸适配体因其独特的优点,被作为抗体的替代物用于构建OTA电化学生物传感器。本文介绍了经典的OTA检测方法和基于适配体的电化学生物传感检测方法,从OTA电化学适配体传感器的适配体优化、新型材料应用以及生物信号放大技术的应用等三个方面总结了该生物传感技术的研究现状,并对其未来的发展进行了展望。  相似文献   

16.
The first total synthesis of the O‐antigen pentasaccharide repeating unit from Gram‐negative bacteria Escherichia coli O111 was achieved starting from four monosaccharide building blocks. Key to the synthetic approach was a bis‐glycosylation reaction to combine trisaccharide 10 and colitose 5 . The colitose building block ( 5 ) was obtained de novo from non‐carbohydrate precursors. The pentasaccharide was equipped at the reducing end with an amino spacer to provide a handle for subsequent conjugation to a carrier protein in anticipation of immunological studies.  相似文献   

17.
《Electroanalysis》2018,30(5):910-920
A label‐free DNA biosensor based on magnetite/multiwalled carbon nanotubes/chitosan (Fe3O4/MWCNTs‐COOH/CS) nanomaterial for detection of Bacillus cereus DNA sequences was fabricated. Negatively charged DNA was electrostatically adsorbed onto materials by protonation of positively charged chitosan under acidic conditions. The electrode surface and hybridization process were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal conditions, the biosensor showed a good linear relationship between peak currents difference (ΔI) and logarithm of the target DNA concentration (Log C) ranging from 2.0×10−13 to 2.0×10−6 M with a detection limit of 2.0×10−15 M (signal/noise ratio of 3). The biosensor also revealed an excellent selectivity to three‐base, completely mismatched and completely matched DNA. This is a simple, fast and friendly method with a low detection limit for the detection of Bacillus cereus specific DNA compared with previously reported electrochemical DNA biosensor. Furthermore, the DNA biosensor may lead to the development of a technology for gold prospecting in the wild.  相似文献   

18.
The electroanalytical performance of bare glassy carbon electrodes (GCE) for the determination of 1‐aminonaphthalene (1‐AN) and 2‐aminonaphthalene (2‐AN) was compared with GCE modified by a Nafion permselective membrane or multiwalled carbon nanotubes and with other types of carbon‐based materials, carbon film and boron doped diamond. Nafion‐modified GCE gave the highest sensitivity and lowest detection limit (0.4 µmol L?1) for differential pulse voltammetric determination of 1‐AN. Electrochemical impedance spectroscopy gave information about the processes at the electrode surface. Simultaneous determination of 1‐AN and 2‐AN in a mixture at GCE and their determination in model samples of river water is presented.  相似文献   

19.
《Electroanalysis》2018,30(8):1781-1790
An useful electrochemical sensing approach was developed for epinephrine (EP) detection based on graphene quantum dots (GQDs) and laccase modified glassy carbon electrodes (GC). The miniature GC biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with carbon nanoparticles. This sensing arrangement utilized the catalytic oxidation of EP to epinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of the enzyme – laccase. With the optimized conditions, the analytical performance demonstrated a high degree of sensitivity −2.9 μA mM−1 cm−2, selectivity in a broad linear range (1–120×10−6 M) with detection limit of 83 nM. Moreover, the method was successfully applied for EP determination in labeled pharmacological samples.  相似文献   

20.
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid 1‐ethyl‐3‐methylimidazolium ethylsulphate ([EMIM]EtOSO3) as the modifier and further used as the working electrode for the sensitive anodic stripping voltammetric detection of Pb2+. The characteristics of the CILE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In pH 4.5 NaAc‐HAc buffer Pb2+ was accumulated on the surface of CILE due to the extraction effect of IL and reduced at a negative potential (‐1.20 V). Then the reduced Pb was oxidized by differential pulse anodic stripping voltammetry with an obvious stripping peak appeared at ?0.67 V. Under the optimal conditions Pb2+ could be detected in the concentration range from 1.0 × 10?8 mol/L to 1.0 × 10?6 mol/L with the linear regression equation as Ip(μA) = ?0.103 C (μmol/L) + 0.0376 (γ = 0.999) and the detection limit as 3.0 × l0?9 mol/L (3σ). Interferences from other metal ions were investigated and Cd2+ could be simultaneously detected in the mixture solution. The proposed method was further applied to the trace levels of Pb2+ detection in water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号