首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports a rational strategy for preparing smart oligo(ethylene glycol)‐based hybrid microgels loaded with high content of homogeneously distributed preformed magnetic nanoparticles (NPs) (up to 33 wt%). The strategy is based on the synthesis of biocompatible multiresponsive microgels by precipitation copolymerization of di(ethylene glycol) methyl ether methacrylate, oligo(ethylene glycol) methyl ether methacrylate, methacrylic acid, and oligo(ethylene glycol)diac­rylate. An aqueous dispersion of preformed magnetic NPs is straightforwardly loaded into the microgels. Robust monodisperse thermoresponsive magnetic microgels are produced, exhibiting a constant value of the volume phase transition temperature whatever the NPs content. The homogeneous microstructure of the initial stimuli‐responsive biocompatible microgels plays a crucial role for the design of unique well‐defined ethylene glycol‐based thermoresponsive hybrid microgels.

  相似文献   


2.
Because of the poor photoreactivity of camphorquinone–amine‐based photoinitiator systems in dental acidic aqueous primer formulations, we were interested to evaluate a commercially available bisacylphosphine oxide as photoinitiator. Because of the promising results on photoreactivity and storage stability, new oligo(ethylene glycol)‐substituted bisacylphosphine oxides were synthesized and investigated. Beside good solubility and significantly increased reactivity in aqueous acidic formulations, sufficient storage stability was found. Additionally, the influence of the type of substitution on the photopolymerization behavior in aqueous, hydrophilic, and hydrophobic resins is discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1686–1700, 2006  相似文献   

3.
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.  相似文献   

4.
Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta‐phenylene bridges, and we conducted a comparative structure–property relationship investigation with para‐phenylene‐bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para‐based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene–ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co‐delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing.  相似文献   

5.
Precision phototheranostics, including photoacoustic imaging and photothermal therapy, requires stable photothermal agents. Developing such agents with high stability and high photothermal conversion efficiency (PTCE) remains a considerable challenge. Herein, we introduce a new photothermal agent based on water‐soluble quaterrylenediimide (QDI) that can self‐assemble into nanoparticles (QDI‐NPs) in aqueous solution. Incorporating polyethylene glycol (PEG) into the QDI core significantly enhances both physiological stability and biocompatibility of QDI‐NPs. The highly photostable QDI‐NPs offer advantages including intense absorption in the near‐infrared (NIR) and high PTCE of up to 64.7±4 %. This is higher than that of commercial indocyanine green (ICG). Their small size (ca. 10 nm) enables sustained retention in deep tumor sites and also proper clearance from the body. QDI‐NPs allow high‐resolution photoacoustic imaging and efficient 808 nm laser‐triggered photothermal therapy of cancer in vivo.  相似文献   

6.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

7.
Precision phototheranostics, including photoacoustic imaging and photothermal therapy, requires stable photothermal agents. Developing such agents with high stability and high photothermal conversion efficiency (PTCE) remains a considerable challenge. Herein, we introduce a new photothermal agent based on water‐soluble quaterrylenediimide (QDI) that can self‐assemble into nanoparticles (QDI‐NPs) in aqueous solution. Incorporating polyethylene glycol (PEG) into the QDI core significantly enhances both physiological stability and biocompatibility of QDI‐NPs. The highly photostable QDI‐NPs offer advantages including intense absorption in the near‐infrared (NIR) and high PTCE of up to 64.7±4 %. This is higher than that of commercial indocyanine green (ICG). Their small size (ca. 10 nm) enables sustained retention in deep tumor sites and also proper clearance from the body. QDI‐NPs allow high‐resolution photoacoustic imaging and efficient 808 nm laser‐triggered photothermal therapy of cancer in vivo.  相似文献   

8.
Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l ‐lactic acid)‐poly(ethylene glycol)‐poly(ethyleneimine) (PDLLA‐PEG‐PEI) block co‐polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA‐PEG‐PEI NPs were characterized by using TGA, IR, 1H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off‐target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.  相似文献   

9.
In the present work, three hydrophilic ionic liquids based on the combination between imidazolium cations attached with ethylene glycol polymers of various lengths and hexafluorophosphate anion were designed and synthesized for the separation of polysaccharides. By employing dextran 100 kDa as model compound, the effects of ionic liquid content, solvent/anti‐solvent volume, and temperature on its recovery efficiency were investigated systematically. The ability of these ionic liquids to precipitate dextran 100 kDa, increases with the elongation of ethylene glycol polymer chain. The established ionic liquid‐based precipitation system was successfully applied to selectively precipitate polysaccharides from water extracts of three traditional Chinese medicines and the precipitation could be achieved in about 15 min. In addition, the different precipitation responses of acidic, neutral, and basic polysaccharides in the ionic liquid‐based precipitation system and theoretical calculations both suggested that the selective precipitation of polysaccharides was probably mediated by interaction between ionic liquids and polysaccharides. The proposed strategy facilitated the isolation and purification of polysaccharides and may trigger a novel application of ionic liquids in carbohydrate research.  相似文献   

10.
Micelles having a core of polystyrene and a mixed shell of poly(ethylene glycol) and poly(4-vinylpyridine) were formed through self-assembly of a triblock copolymer poly(ethylene glycol)- block-polystyrene- block-poly(4-vinylpyridine) in acidic water (pH 2). Reducing the HAuCl(4)-treated micelle solution leads to the formation of the Au-micelle composites with a core of polystyrene, a hybrid shell of poly(4-vinylpyridine)/Au/poly(ethylene glycol), and a corona of poly(ethylene glycol). The gold nanoparticles with controlled sizes were anchored to poly(4-vinylpyridine) to form the physically cross-linked hybrid shell. In aqueous solution, the hybrid shell is swollen and the swollen degree is sensitive to the pH condition. Under basic conditions, the channel in the hybrid shells of the composite is produced, which renders the composites a good catalytic activity. In addition, the composites also show good stability, unchanged hydrodynamic diameter, and surface plasmon absorption under different pH conditions.  相似文献   

11.
Delivery systems based on nanoparticles (NPs) have shown great potential to reduce side effects and improve the therapeutic efficacy. Herein, we report the one-pot synthesis of poly(ethylene glycol)-mediated zeolitic imidazolate framework-8 (ZIF-8) NPs for the co-delivery of an anticancer drug (i.e., doxorubicin) and a cell penetrating peptide containing histidine and arginine (i.e., H4R4) to improve the efficacy of therapeutic delivery. The cargo-encapsulated ZIF-8 NPs are pH-responsive, which are stable at neutral pH and degradable at acidic pH to release the encapsulated cargos. The released H4R4 can help for endosome/lysosome escape to enhance the cytotoxicity of the encapsulated drugs. In vivo studies demonstrate that the co-delivery of doxorubicin and H4R4 peptides can efficiently inhibit tumor growth without significant side effects. The reported strategy provides a new perspective on the design of drug delivery systems and brings more opportunities for biomedical applications.  相似文献   

12.
This study describes preparation of polymeric sorbent and its use in removal of some phenolic compounds from aqueous solution. The polymer [poly(ethylene glycol dimethacrylate ‐ co‐methacrylic acid)] is stable both thermally and chemically. High temperature (200°C) and strong acidic or alkaline solutions (4 M HCl or NaOH) are not effective on the adsorption characteristics of polymer. Removal process of phenols is pH‐dependent and from the obtained results pH = 7.0 was selected as an optimum pH. Different parameters affecting sorption process were tested, and it was found that the kinetic of sorption is fast; therefore, column experiment at higher flow rates or batch experiment can be used. Methanol was selected as a washing solvent in column experiments. Capacity of sorbent for the studied compounds was tested and the following order was obtained: p‐chlorophenol > p‐aminophenol > phenol.  相似文献   

13.
Loading of HAuCl4 in poly(amido amine) G4 dendrimers having poly(ethylene glycol) (PEG) grafts at all chain ends and subsequent reduction with NaBH4 yielded PEG-modified dendrimers encapsulating gold nanoparticles (Au NPs) of ca. 2 nm diameter. The Au NPs held in the dendrimers were stable in aqueous solutions and dissolved readily, even after freeze-drying. Despite their small particle size, the heat-generating ability of Au NPs held in the dendrimer was comparable to that of widely used Au NPs with ca. 11 nm diameter under visible light irradiation. The observed excellent colloidal stability, high heat-generating ability and their biocompatible surface confirm that the PEG-modified dendrimers encapsulating Au NPs are a promising tool for photothermal therapy and imaging.  相似文献   

14.
This work was aimed to synthesize and characterize poly(2‐hydroxyethyl methacrylate) [poly (HEMA)]‐based molecularly imprinted polymer nanoparticles (MIP NPs) containing timolol maleate (TM) via precipitation polymerization. The molecular structures of the MIP and non‐imprinted polymer (NIP) NPs were compared by means of Fourier transform infrared spectroscopy. The morphological observations by using scanning electron microscopy and transmission electron microscopy confirmed the formation of MIP NPs as small as 128 nm in average diameter with appropriate synthesis conditions. Thermal behaviors of the samples were also studied by the use of thermogravimetric analysis and differential scanning calorimetry. By considering a series of key factors such as monomer : template ratio, cross‐linker type, pH, and temperature, the sample with promising characteristics was found to be that of HEMA : TM ratio of 10:1, 40 mmol of ethylene glycol dimethacrylate as cross‐linker, and polymerization temperature of 60°C in acetonitrile as porogenic solvent. Furthermore, the ultraviolet‐visible (UV‐vis) spectrophotometry results proved a controlled release of TM from the MIP NP samples compared with NIP ones at extended periods. Moreover, the cytotoxicity of the MIP and NIP NPs samples was evaluated on mesenchymal stem cells, and the obtained observations showed that they had no adverse side effect on the living cells; especially the surface of the MIP NPs sample depicted highly cell's biocompatibility. Finally, the outcomes from designed different experiments conducted us that the HEMA‐based MIP NPs have great potential as an ocular nanocarrier for TM delivery. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a novel biodegradable pH-sensitive hydrogel based on poly(?-caprolactone) (PCL), methoxpoly(ethylene glycol) (MPEG) and methacrylic acid (MAA) was prepared by UV-initiated free radical polymerization. The resulting macromonomers and hydrogels were characterized by FTIR and/or 1H NMR. Swelling behaviour and pH sensitivity of the hydrogels were studied in detail. With increase in pH of aqueous medium from 1.2 to 7.2, swelling ratio of the hydrogels increased accordingly. The hydrolytic degradation behaviour was also investigated. The prepared biodegradable pH-sensitive hydrogel based on PCL, MPEG, and MAA might have great potential application in smart drug delivery system.  相似文献   

16.
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin-loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) in dimethyl sulfoxide solution into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.  相似文献   

17.
PdCo bimetallic nanoparticles (NPs) were decorated over three‐dimensional graphene (3DG) in a facile manner by reducing palladium chloride and cobalt chloride in the presence of ethylene glycol as reducing, stabilizing and dispersing agent. The PdCo NPs–3DG nanocomposite was characterized using Raman, X‐ray photoelectron and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction and transmission electron microscopy. The obtained catalyst can act as an efficient catalyst for Sonogashira cross‐coupling reactions in aqueous media.  相似文献   

18.
In this study, a reduction‐responsive poly (ethylene glycol)‐dexamethasone biarm conjugate was synthesized as intracellular targeted drug delivery carriers. The hydroxyl end group of methoxy poly (ethylene glycol) (mPEG) was modified to introduce a biarm structure with bioreducible disulfide bond and amine end groups. Dexamethasone (Dex) as a nuclear targeting moiety was conjugated to the amine end groups of mPEG biarm derivatives, mPEG‐(NH2)2 or mPEG‐(ss‐NH2)2, with or without bioreducible disulfide bonds. The bioreducible and nonreducible mPEG‐Dex biarm conjugates, R‐mPEG‐Dex and N‐mPEG‐Dex, were synthesized and characterized by various analytical methods, proton nuclear magnetic resonance (1H‐NMR), Fourier transform infraredspectroscopy (FT‐IR), dynamic light scattering (DLS), and fluorescence measurements. Amphiphilic mPEG‐Dex conjugates self‐assembled in aqueous solutions to form nanoparticles (NPs) with a size range of 130 to 150 nm, and their critical micelle concentrations (CMCs) were determined to be 12.4 and 15.3 mg/L, respectively, for bioreducible and nonreducible ones. The R‐mPEG‐Dex NPs maintained good colloidal stability in the presence of bovine serum albumin (BSA) for more than 1 week but demonstrated a significant change in colloidal stability in the presence of dithiothreitol (DTT). In DTT‐containing phosphate‐buffered saline (PBS), the bioreducible NPs showed not only reduction‐responsive destabilization with PEG shedding but also thiol‐dependent drug release profile. Our observations indicated that the R‐mPEG‐Dex NPs have a promising prospective as an efficient nanocarrier for intracellular targeted delivery of various anticancer drugs.  相似文献   

19.
A heteroatom‐rich 3D noninterpenetrating metal–organic framework (MOF) Cd‐EDDA constructed from an ethylene glycol ether bridging tetracarboxylate ligand H4EDDA (5,5′‐(ethane‐1,2‐diylbis(oxy))diisophthalic acid) shows good chemical resistance to both acidic and alkaline solutions with a pH ranging from 2.0 to 12.2. There is a corresponding ratiometric luminescence response to pH from 2.0 to 11.5, and the sensing mechanism is also discussed through ion chromatography and molecular force field‐based calculations. Importantly, the probe can easily be regenerated simply by modulating the pH of the solution, thus being the first example of a regenerable MOF‐based ratiometric luminescent probe for pH.  相似文献   

20.
Carbonic anhydrase IX (CA IX), over‐expressed on cancer cells, catalyzes CO2 to bicarbonate and protons, contributing to the acidic extracellular pH (pHe), which enhances the multidrug resistance of tumor cells. Therefore, alleviating tumor acidosis would greatly improve the outcome of chemotherapy. This work fabricates acetazolamide (ACE)‐loaded pH‐responsive nanoparticles (ACE‐NPs), which are quickly disintegrated in an acidic solution (pH 6.8), resulting in a quick release of ACE from these NPs to inhibit the expression of CA IX, thus up‐regulating the pHe value. These ACE‐NPs have no obvious in vitro cytotoxicity and in vivo studies confirm the accumulation of ACE‐NPs in tumor tissue. In addition, mice treated with ACE and paclitaxel (PTX) co‐loaded NPs show a smaller tumor size and a higher survival rate when compared to that of mice treated with ACE‐ or PTX‐loaded NPs. This work reveals that simultaneous delivery of ACE and chemotherapy agents to tumor tissue can up‐regulate the acidic pHe value, consequently enhancing the anti‐tumor ability of chemotherapy medicine. These findings open a new window for enhancing the anti‐tumor ability of traditional chemotherapy in clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号