首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unique ordered TiO(2) superstructures with tunable morphology and crystalline phase were successfully prepared by the use of different counterions. Dumbbell-shaped rutile TiO(2) and nanorod-like rutile mesocrystals constructed from ultrathin nanowires, and quasi-octahedral anatase TiO(2) mesocrystals built from tiny nanoparticle subunits were achieved. Interestingly, the obtained anatase mesocrystals have a fine microporous structure and a large surface area. The influence of the counterions in the reaction system is discussed and possible mechanisms responsible for the formation of the unique ordered TiO(2) superstructures with different morphologies and crystalline phases are also proposed based on a series of experimental results. The obtained TiO(2) superstructures were used as anode materials in lithium ion batteries, and exhibited higher capacity and improved rate performance; this is attributed to the intrinsic characteristics of the mesoscopic TiO(2) superstructures, which have a single-crystal-like and porous nature.  相似文献   

2.
The development of hierarchical TiO2 superstructures with new morphologies and intriguing photoelectric properties for utilizing solar energy is known to be an effective approach to alleviate the serious problems of environmental pollution. Herein, unique oxygen-deficient dumbbell-shaped anatase TiO2−x mesocrystals (DTMCs) enclosed by nearly 100 % {101} facets were readily synthesized by mesoscale transformation in TiCl3/acetic acid (HAc) mixed solution, followed by calcination under vacuum. These mesocrystals exhibited much higher photoreactivity toward removing the model pollutants methyl orange and CrVI than truncated tetragonal bipyramidal anatase nanocrystals (TNCs), anatase mesocrystals built from truncated tetragonal bipyramidal anatase nanocrystals (TTMCs), and anatase mesocrystals constructed by anatase nanocrystals with nearly 100 % exposed {101} facets (TMCs), revealing that both the oxidation and reduction abilities of anatase TiO2 were simultaneously enhanced upon fabricating an oxygen-deficient mesocrystalline architecture with about 100 % exposed {101} facets. Further characterization illustrated that such an enhancement of photoreactivity was mainly due to the strengthened light absorption, boosted charge carrier separation, and nearly 100 % exposed {101} facets of the oxygen-deficient dumbbell-shaped anatase mesocrystals. This work will be useful for guiding the synthesis of oxygen-deficient ordered superstructures of metal oxides with desired morphologies and exposed facets for promising applications in environmental remediation.  相似文献   

3.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   

4.
水热法合成掺杂铁离子的小管径TiO2纳米管   总被引:17,自引:0,他引:17       下载免费PDF全文
碳纳米管这种一维结构的新材料的发现为物理、化学、材料科学和纳米科学开辟了全新的研究领域.近年来,非碳无机类富勒烯(Inorganic Fullerenelike,简称IF)纳米管也受到人们的广泛关注.  相似文献   

5.
In this study, different commercially available TiO2 powders (Degussa P25, pure anatase, and rutile) were submitted to selective dissolution treatments, with H2O2/NH4OH and 10% HF, known to remove rutile and anatase from physical mixtures. The aim was to check whether a particular separation method designed to remove a specific crystalline phase influences the properties of the other phase from the mixture or not. More precisely, we have studied how the HF dissolution method designed to selectively remove the anatase affected the physicochemical and photocatalytic properties of rutile. In a similar way, the changes in the anatase properties were studied, after the H2O2/NH4OH treatment, initially used to remove rutile from the mixture. All the samples were characterized by X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy, diffuse reflectance (DR) ultraviolet–visible, and Raman spectroscopy. The photocatalytic activity of these powders was tested in the oxidation of p-chlorophenol from water. The selective treatment methods not only dissolved the target phase but also changed some physicochemical and the photocatalytic performances of the other TiO2 crystalline phase in a considerable manner. These aspects should be taken into account in the studies regarding the synergistic effects of anatase and rutile, especially in reconstructed TiO2 photocatalysts.  相似文献   

6.
Two‐dimensional anatase TiO2 hollow nanoplates were firstly synthesized through a facile synthesis route by using α‐Fe2O3 nanoplates as removable templates. Two‐dimensional hollow TiO2 nanoplates with different ratios of anatase and rutile phases were obtained by adjusting the calcining temperature. The average diameters were around 600 nm, and the shell thickness was approximately 30 nm. The photocatalytic performance of TiO2 was investigated by decomposing rhodamine B under simulated sunlight. Among the TiO2 samples, the anatase TiO2 hollow nanoplates manifested a significant enhancement in the photocatalytic performances. The excellent catalytic performance can be attributed to the unique structure of the two‐dimensional anatase TiO2 hollow nanoplates, including a large surface area and increased dye–photocatalyst contact areas as well as more active sites for photodegradation.  相似文献   

7.
The high‐pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co‐catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble‐metal‐decorated TiO2). EPR and PL measurements indicated the intrinsic co‐catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high‐pressure hydrogenation; other common reduction treatments do not result in this effect.  相似文献   

8.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

9.
Although tremendous effort has been directed to synthesizing advanced TiO2, it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase–rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2, which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2, inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective.  相似文献   

10.
Well‐ordered TiO2 nanotubes were prepared by the electrochemical anodization of titanium in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 20 min, followed by annealing. The surface morphology and crystal structure of the samples were examined as a function of the annealing temperature by field emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD), respectively. Crystallization of the nanotubes to the anatase phase occurred at 450 °C, while rutile formation was observed at 600 °C. Disintegration of the nanotubes was observed at 600 °C and the structure vanished completely at 750 °C. Electrochemical corrosion studies showed that the annealed nanotubes exhibited higher corrosion resistance than the as‐formed nanotubes. The growth of hydroxyapatite on the different TiO2 nanotubes was also investigated by soaking them in simulated body fluid (SBF). The results indicated that the tubes annealed to a mixture of anatase and rutile was clearly more efficient than that in their amorphous or plain anatase state. The in vitro cell response in terms of cell morphology and proliferation was evaluated using osteoblast cells. The highest cell activity was observed on the TiO2 nanotubes annealed at 600 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A synchronous carbon‐coating and interfacial‐functionalizing approach is proposed for the fabrication of Mo‐doped MoxTi1?xO2‐δ nanotubes (C@IF‐MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo‐doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one‐dimensional (1D) structure with crystalline an anatase/rutile mixed‐phase TiO2 core and Mo‐functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF‐MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo‐functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed‐phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF‐MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.  相似文献   

12.
Titanium dioxide (TiO2) aerogels were prepared with sol–gel ambient pressure drying method by using titanium tetrachloride (TiCl4) as precursor and tetraethoxysilane as modifier, calcinated at different temperature and characterized by X‐ray diffraction, transmission electron microscopy and small angle X‐ray scattering. The results showed that the TiO2 aerogels remained amorphous under 500 °C, changed to anatase from 600 °C and further changed to rutile from 900 °C. Between 60 °C and 500 °C, the primary particles within the samples concentrated mainly upon small sizes, enlarged and diverged remarkably above 600 °C. The crystalline grains grew and agglomerated with the rise of the calcination temperature. The TiO2 aerogels at a temperature higher than 800 °C have better stability than anatase because of the formation of partial Ti―O―Si bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
采用溶胶-凝胶法在钛酸丁酯水解过程引入硼酸、硝酸铈,制备具有光催化活性的硼铈共掺杂纳米二氧化钛(TiO2),经XRD、TEM、FT-IR、UV-Vis-DRS表征晶体结构,在日光灯照射下,光催化降解三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯农药。结果表明:硼铈共掺杂的TiO2只有锐钛矿型,而纯的或掺铈的TiO2有含有锐钛矿型、金红石相和少量板钛矿型,UV-Vis-DRS测定结果表明硼铈共掺杂的TiO2禁带宽度变小,硼铈共掺杂的TiO2在可见光区吸光度高于掺杂铈和不掺杂的TiO2,在420nm~850nm有强的吸收;在同样光照下对三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯的降解试验证明硼铈共掺杂纳米TiO2的光催化活性高于不掺杂或只掺杂铈的TiO2。  相似文献   

14.
The peroxo titanic acid solution was successfully prepared using titanium trichloride as a precursor. The basic properties of the TiO2 film prepared by the solution were investigated in view of phase change, bandgap energy, crystalline size etc. The film displayed amorphous TiO2 at room temperature, anatase above 281°C and a mixture of anatase and rutile at 990°C. The crystalline size increases with annealing temperatures, while the bandgap energies decrease due to the quantum size effect and the formation of rutile phase which has low bandgap energy. As a result of TG-DTA, it was found that annealing treatment at 990°C for 2 h formed a mixture of anatase and rutile through three steps: (1) the removal of physically adsorbed water (2) the decomposition of peroxo group (3) amorphous-anatase or anatase-rutile phase transformation.  相似文献   

15.
TiO2 photocatalytic powders were synthesized by a sol–gel combustion synthesis method in which urea was used as the fuel and titanyl nitrate was used as the oxidizer. Various fuel-to-oxidizer ratios were studied for their effects on the combustion phenomena and the properties of the synthesized TiO2. The fuel-to-oxidizer ratio was found to determine the maximum combustion temperature, which in turn affects the specific surface area, crystallite size, and weight fraction of anatase phase of the synthesized TiO2. The synthesized TiO2 all contain carbonaceous species and are either pure anatase or anatase–rutile mixed phase in crystalline structure. The photocatalytic activity of the TiO2 was found to correlate to a certain degree with the specific surface area, crystallite size, weight fraction of anatase phase, and visible and IR absorbances. The mixed phase TiO2 shows a higher photocatalytic activity than the pure anatase phase TiO2 when containing a small fraction (<~25 wt%) of rutile phase but a lower phoyocatalytic activity when containing a large fraction (>~25 wt%) of rutile phase. The synthesized TiO2 all show higher photocatalytic activity than Degussa P25 TiO2. The enhanced photocatalytic activity was attributed mainly to sensitization by the carbonaceous species and larger amounts of hydroxyl group adsorbed on the TiO2 surface.  相似文献   

16.
TiO2 nanostructures have been considered as promising anode materials in a new generation of lithiumion batteries due to their high safety, superior rate capability and excellent cyclic stability. In particular, TiO2 mesocrystals, a new class of superstructured materials, have attracted a great deal of research interests due to the unique structure composed of crystallographically oriented nanocrystals, and thus showed improved lithium‐ion insertion performance. In this review, recent progress in preparation and lithium‐ion storage properties of TiO2 mesocrystals are summarized. Two typical ways for synthesizing TiO2 mesocrystals are described, namely, the oriented topotactic transformation and direct synthesis in solution. The additive‐free synthesis of TiO2 mesocrystals and their lithium‐ion intercalation properties are highlighted and discussed.  相似文献   

17.
Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstruc-tures of TiO2 and supported Ru/TiO2 catalysts were characterized with X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and nitrogen adsorption isotherms. The phase structure, particle size, morphology, and specific surface area were de-termined. The supported Ru catalysts were applied for the selective methanation of CO in a hydrogen-rich stream. The results indicated that the Ru catalyst supported on rutile and TiO2-B exhibited higher catalytic performance than the counterpart supported on anatase, which suggested the distinct interaction between Ru nanoparticles and TiO2 resulting from different crystalline phases and morphology.  相似文献   

18.
A nanoporous polymeric crystalline TiO2 composite (TiO2/PDVB‐MA) has been successfully synthesized through an in situ synthesis method using divinylbenzene (DVB), methacrylic acid (MA) and tetrabutyl titanate. The experimental results showed that TiO2 nanoparticles composed of the mixture phases of anatase and rutile were homogeneously dispersed into the PDVB‐MA support. The TiO2/PDVB‐MA composite was used as photocatalyst for Rhodamine B (RhB), bisphenol A and 2,4,6‐trichlorophenol degradation under visible light irradiation. More interestingly, the excellent photocatalytic performance of the composite was observed with regard to RhB and bisphenol A, which might be ascribed to the synergistic effect between TiO2 nanoparticles and PDVB‐MA. Moreover, TiO2/PDVB‐MA composite could be recycled at least four times in the removal of RhB, suggesting that it is a promising photocatalyst to catalyze the degradation of organic pollutants under visible light irradiation.  相似文献   

19.
Hydrolysis of TiCl4 in a diether‐functionalized imidazolium ionic liquid (IL), namely 1‐methyl‐3‐[2‐(2‐methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I ? CH3SO3), results in a heterostructured organic/inorganic and sponge‐like porous TiO2 material. The thermal treatment (300 °C) followed by calcination (500 °C) affords highly porous TiO2. The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular‐shaped particles with different porous structures. These hierarchical‐structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water‐splitting process, yielding up to 1304 μmol g?1 on hydrogen production.  相似文献   

20.
The heterophase solid–solid junction as an important type of structure unit has wide applications for its special mechanics and electronic properties. Here we present a first three-phase atomic model for the anatase–rutile TiO2 heterophase junction and determine its optical and electronic properties, which leads to resolution of the long-standing puzzles on the enhanced photocatalytic activity of anatase–rutile photocatalysts. By using a set of novel theoretical methods, including crystal phase transition pathway sampling, interfacial strain analysis and first principles thermodynamics evaluation of holes and electrons, we identify an unusual structurally ordered three-phase junction, a layer-by-layer “T-shaped” anatase/TiO2-II/rutile junction, for linking anatase with rutile. The intermediate TiO2-II phase, although predicted to be only a few atomic layers thick in contact with anatase, is critical to alleviate the interfacial strain and to modulate photoactivity. We demonstrate that the three-phase junction acts as a single-way valve allowing the photogenerated hole transfer from anatase to rutile but frustrating the photoelectron flow in the opposite direction, which otherwise cannot be achieved by an anatase–rutile direct junction. This new model clarifies the roles of anatase, rutile and the phase junction in achieving high photoactivity synergistically and provides the theoretical basis for the design of better photocatalysts by exploiting multi-phase junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号