首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

2.
Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li‐ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one‐pot synthesis of carbon‐coated nanostructured iron oxide on few‐layer graphene through high‐pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon‐coated iron oxide, while the graphene acts as a high‐surface‐area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative‐electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  相似文献   

3.
Porous carbon anodes with a controllable Vmes/Vmic ratio were synthesized through the self‐assembly of poly(benzoxazine‐co‐resol) and the simultaneous hydrolysis of tetraethyl orthosilicate (TEOS) followed by carbonization and removal of silica. The Vmes/Vmic ratio of the carbon can be controlled in the range of approximately 1.3–32.6 through tuning the amount of TEOS. For lithium‐ion battery anodes, a correlation between the electrochemical performance and Vmes/Vmic ratio has been established. A high Vmes/Vmic ratio in porous carbons is favorable for enhancing the accessibility of Li ions to active sites provided by the micropores and for achieving good lithium storage performance. The obtained porous carbon exhibits a high reversible capacity of 660 mAh g?1 after 70 cycles at a current density of 100 mA g?1. Moreover, at a high current density of 3000 mA g?1, the capacity still remains at 215 mAh g?1, showing a fast charge‐discharge potential. This synthesis method relying on modified benzoxazine chemistry with the hydrolysis of TEOS may provide a new route for the development of mesoporous carbon‐based electrode materials.  相似文献   

4.
A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium‐ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium‐ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemical modification was performed to metallic lithium deposited on the anode surface due to previous plating with isopropanol (IPA). After this procedure an oxygenated species was detected by scanning electron microscopy (SEM), which later was confirmed as Li2CO3 by Fourier transform infrared spectroscopy (FTIR) and X‐ray powder diffraction (XRPD). A valuation of the covered area by Li2CO3 was carried out with an image analysis using energy‐dispersive X‐ray spectroscopy (EDX) and quantitative Rietveld refinement.  相似文献   

5.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   

6.
Lithium–sulfur (Li–S) batteries are highly regarded as the next‐generation energy‐storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg?1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high‐energy‐density Li–SPAN batteries. However, the instability of the Li‐metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li‐metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li‐metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li‐metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

7.
A solvent‐exchange approach for the preparation of solvated graphene frameworks as high‐performance anode materials for lithium‐ion batteries is reported. The mechanically strong graphene frameworks exhibit unique hierarchical solvated porous networks and can be directly used as electrodes with a significantly improved electrochemical performance compared to unsolvated graphene frameworks, including very high reversible capacities, excellent rate capabilities, and superior cycling stabilities.  相似文献   

8.
Nanostructured iron compounds as lithium‐ion‐battery anode material have attracted considerable attention with respect to improved electrochemical energy storage and excellent specific capacity, so lots of iron‐based composites have been developed. Herein, a novel composite composed of three‐dimensional Fe2N@C microspheres grown on reduced graphite oxide (denoted as Fe2N@C‐RGO) has been synthesized through a simple and effective technique assisted by a hydrothermal and subsequent heating treatment process. As the anode material for lithium‐ion batteries, the synthetic Fe2N@C‐RGO displayed excellent Li+‐ion storage performance with a considerable initial capacity of 847 mAh g?1, a superior cycle stability (a specific discharge capacity of 760 mAh g?1 remained after the 100th cycle), and an improved rate‐capability performance compared with those of the pure Fe2N and Fe2N‐RGO nanostructures. The good performance should be attributed to the existence of RGO layers that can facilitate to enhance the conductivity and shorten the lithium‐ion diffusion path; in addition, the carbon layer on the surface of Fe2N can avert the structure decay caused by the volume change during the lithiation/delithiation process. Moreover, in situ X‐ray absorption fine‐structure analysis demonstrated that the excellent performance can be attributed to the lack of any obvious change in the coordination geometry of Fe2N@C‐RGO during the charge/discharge processes.  相似文献   

9.
10.
VO2‐decorated reduced graphene balls were prepared by a one‐pot spray‐pyrolysis process from a colloidal spray solution of well‐dispersed graphene oxide and ammonium vanadate. The graphene–VO2 composite powders prepared directly by spray pyrolysis had poor electrochemical properties. Therefore, the graphene–VO2 composite powders were transformed into a reduced graphene ball (RGB)–V2O5 (RGB) composite by post‐treatment at 300 °C in an air atmosphere. The TEM and dot‐mapping images showed a uniform distribution of V and C components, originating from V2O5 and graphene, consisting the composite. The graphene content of the RGB–V2O5 composite, measured by thermogravimetric analysis, was approximately 5 wt %. The initial discharge and charge capacities of RGB–V2O5 composite were 282 and 280 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 100 %. On the other hand, the initial discharge and charge capacities of macroporous V2O5 powders were 205 and 221 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 93 %. The RGB–V2O5 composite showed a better rate performance than the macroporous V2O5 powders.  相似文献   

11.
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li+ with pure carbonates and ethylene carbonate (EC)‐based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06‐2X/6‐311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li‐ion solvation in carbonates and EC‐based mixtures. A strong local tetrahedral order involving four carbonates around the Li+ was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li+ ion with carbonates are negative and suggested the ion–carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li+ interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO‐EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li+ ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO‐EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li‐ion batteries, which complies with experiments and other theoretical results.  相似文献   

12.
Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.  相似文献   

13.
14.
Prelithiation is of great interest to Li‐ion battery manufacturers as a strategy for compensating for the loss of active Li during initial cycling of a battery, which would otherwise degrade its available energy density. Solution‐based chemical prelithiation using a reductive chemical promises unparalleled reaction homogeneity and simplicity. However, the chemicals applied so far cannot dope active Li in Si‐based high‐capacity anodes but merely form solid–electrolyte interphases, leading to only partial mitigation of the cycle irreversibility. Herein, we show that a molecularly engineered Li–arene complex with a sufficiently low redox potential drives active Li accommodation in Si‐based anodes to provide an ideal Li content in a full cell. Fine control over the prelithiation degree and spatial uniformity of active Li throughout the electrodes are achieved by managing time and temperature during immersion, promising both fidelity and low cost of the process for large‐scale integration.  相似文献   

15.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   

16.
Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium‐ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium‐ion batteries (SIBs) have been reconsidered with the aim of providing a lower‐cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state‐of‐the art overview on the redox behavior of materials when used as electrodes in lithium‐ion and sodium‐ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed.  相似文献   

17.
18.
A simple approach for loading LiFePO4 (LFP) nanoparticles on graphene (G) that could assemble amorphous LiFePO4 nanoparticles into a stable, crystalline, graphene‐modified layered materials (G‐S‐LFP, S=sucrose) by using graphene as building block and sucrose as a linker has yet to be developed. On the basis of differential scanning calorimetric and transmission electron microscopy analysis of the samples from controlled experiment, a possible mechanism was proposed to explain the “linker” process of LFP and graphene with sucrose as the linker. The electrochemical properties of the samples as cathode material for lithium‐ion batteries were studied by cyclic voltammogrametry and galvanostatic methods. Results showed that G‐S‐LFP displayed superior lithium‐storage capability with current density changes randomly form 0.5 to 10 C. The significant improvement for rate and cycle performance could be attributed to the high conductivity of the graphene host, the high crystallinity, and the layered structure.  相似文献   

19.
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications.  相似文献   

20.
Silicon is considered a most promising anode material for overcoming the theoretical capacity limit of carbonaceous anodes. The use of nanomethods has led to significant progress being made with Si anodes to address the severe volume change during (de)lithiation. However, less progress has been made in the practical application of Si anodes in commercial lithium‐ion batteries (LIBs). The drastic increase in the energy demands of diverse industries has led to the co‐utilization of Si and graphite resurfacing as a commercially viable method for realizing high energy. Herein, we highlight the necessity for the co‐utilization of graphite and Si for commercialization and discuss the development of graphite/Si anodes. Representative Si anodes used in graphite‐blended electrodes are covered and a variety of strategies for building graphite/Si composites are organized according to their synthetic methods. The criteria for the co‐utilization of graphite and Si are systematically presented. Finally, we provide suggestions for the commercialization of graphite/Si combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号