首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A CuO/Al2O3 catalyst was prepared using the impregnation method. The catalytic activity of CuO/Al2O3 for the ozonation of acid red B (ARB) in aqueous solution was studied, the chemical oxygen demand (COD) removal rate was an indicator for catalytic activity evaluation. The effects of initial ARB concentration, solution pH, and different oxidative degradation systems on oxidative degradation of ARB solution were studied. The CuO/Al2O3 catalyst was characterized using X‐ray diffractometry (XRD), N2 adsorption desorption test, X‐ray photoelectron spectroscopy (XPS), and zero‐point charge (pHzpc). The results show that copper species on the carrier were in the form of CuO and highly dispersed on the carrier. CuO can increase the alkalinity of the Al2O3 surface, and the CuO/Al2O3 catalyst facilitates the decomposition of O3 into ·OH, which was beneficial for the catalytic O3 oxidation degradation reaction. With the increase of the initial concentration of simulated wastewater, the CuO/Al2O3 catalytic reaction still has a high COD removal rate. Alkaline solution was of benefit to catalyze the degradation of ARB solution. When the ARB solution pH = 8.93, the degradation reaction was carried out for 40 min, the COD removal rate reached 83.2%. The degradation reaction was dominated by the hydroxyl radical (·OH) reaction.  相似文献   

2.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

3.
Effect of nickel oxide additives on the oxidation selectivity of carbon monoxide in the presence of hydrogen was studied for the widely recognized system constituted by copper and cerium oxides. It was shown that a significant positive effect is observed upon introduction of the nickel-containing additive (??0.3%) due to the electron-donor effect of nickel oxide. It was demonstrated that the catalyst of composition NiO/CuO/CeO2/Al2O3 shows high selectivity in the reaction of CO oxidation.  相似文献   

4.
采用普通浸渍和超声改性的方法分别制备了CuO/Al2O3-MgO催化剂,用于超低浓度甲烷的催化燃烧,并利用SEM、XRD、XPS、H2-TPR等技术对催化剂进行表征,研究了超声改性作用对催化剂的结构和性能的影响.结果表明,与普通浸渍法制备的催化剂相比,在超声改性的CuO/Al2O3-MgO催化剂上,甲烷的转化率得到提高,燃烧特征温度降低.随着超声时间的延长和超声功率的增加,催化剂的催化活性均呈现先增大后减小的趋势;催化剂制备的最佳超声工况为功率150 W、时间20 min.超声改性可使催化剂的比表面积和孔容积增大,表面催化活性较高的Cu+浓度增加,活性组分CuO由晶相向非晶相转变、分散度增大,晶粒粒径变小、分布更均匀;这使得甲烷催化燃烧的表观活化能下降、催化剂活性得到增强.  相似文献   

5.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

6.
采用微波加热分解法(一步法)和微波加热处理共沉淀+浸渍法(两步法)制备了CuO/CeO2-ZrO2催化剂,并对其进行了X射线衍射、低温氮气吸附/脱附和程序升温还原等表征,采用色谱流动法考察了催化剂的催化CO低温氧化性能.结果表明,一步法比两步法更有利于使催化剂表面CuO高度分散,CuO与CeO2-ZrO2间的相互作用更强,CuO更容易被还原,从而具有更高的催化CO氧化活性.与CeO2-ZrO2有相互作用的高分散和小颗粒CuO有利于催化剂活性的提高,与CeO2-ZrO2无相互作用的大颗粒CuO对催化剂的活性有抑制作用.  相似文献   

7.
应用原位漫反射红外-质谱联用、程序升温和暂态响应技术研究了CuO/Al2O3催化剂表面酸性及其反应性能. 实验结果表明, CuO/Al2O3催化剂表面呈Lewis酸性, 硫化不仅可增强CuO/Al2O3催化剂的Lewis酸性, 而且可产生新的Brønsted酸性位; 吸附于Lewis酸性位的NH3具有选择性催化还原(SCR)活性. 而在硫化样Cu8(400S)中Lewis和Brønsted酸性位同时存在的情况下, 吸附于Lewis和Brønsted酸性位的氨均具有SCR活性, 且后者较前者弱; CuO/Al2O3催化剂上的SCR反应遵循Eley-Rideal机理, 即SCR反应发生于吸附态NH3与气相NO之间.  相似文献   

8.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

9.
The catalytic properties of systems prepared by the supporting of CuO onto CeO2, ZrO2, and Zr0.5Ce0.5O2 with particle sizes of 15–25 nm (nitrate pyrolysis (p)) and 5–6 nm (microemulsion method (me)) in the reaction of CO oxidation in an excess of H2 were studied. In the latter case, the supports had an almost homogeneous surface and a small number of defects. The catalytic activity of (me) and (p) supports was low and almost the same, whereas the catalytic activity of CuO/(CeO2, ZrO2, and Zr0.5Ce0.5O2)(me) samples was lower than that of CuO/(CeO2 and ZrO2)(p). The maximum CO conversion (∼100% at 125°C) was observed on 5% CuO/CeO2 (p). The CO and CO2 adsorption species on (p) and (me) catalysts were studied by TPD. Differences in the compositions of copper-containing centers on the surfaces of (p) and (me) systems were found using TPR. The nature of the active centers of CO oxidation and the effect of support crystallite size on the catalytic activity were considered.  相似文献   

10.
Catalytic wet air oxidation of an aqueous solution of p-hydroxybenzoic acid was conducted over ruthenium catalysts (1 wt%) supported on CeO2–Al2O3 aerogels mixed oxides at 140 °C and 50 bars of air. We study the effect of the amount of CeO2 in the catalyst. We found that the optimal cerium content in the Al2O3 support was 20 wt%. The activity of the Ru/Al2O3 and Ru/CeO2 was also tested for comparison. It was found that the addition of CeO2 on the alumina support improves the activity of Ru catalysts. The activity of the samples decreases in the following order: Ru/Ce–Al (20) > Ru/Ce–Al (10) > Ru/Ce–Al (5) ≈ Ru/Al2O3 > Ru/CeO2. Samples characterization was performed by means of N2 adsorption–desorption, XRD, UV–Vis, TPR, SEM and TEM.  相似文献   

11.
The Ti–6Al–4V alloy is an important aviation material, but has a poor resistance to slide wear. Laser cladding of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 preplaced powders on the Ti–6Al–4V alloy can form the Ti3Al/γ‐Ni matrix composite coating, which improves the wear resistance of the substrate. In this study, the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 laser‐cladded coating was researched by means of X‐ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The experimental results indicate that under the action of SiC/nano‐CeO2, this composite coating exhibited a fine microstructure. Furthermore, the proper content of nano‐CeO2 decreased the crack tendency. The results above indicated that, it is feasible to improve the tribological property of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 laser‐cladded coating by adding of SiC/nano‐CeO2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
在制备CuO/ZnO/Al2O3催化剂的老化过程中,采用微波辐射老化技术,着重研究了溶剂极性对前躯体物相组成,烧后CuO/ZnO/Al2O3催化剂结构及其在浆态床合成甲醇工艺中催化性能的影响。通过XRD、DTG、H2-TPR,FTIR、HR-TEM和XPS对前驱体及催化剂表征表明,沉淀母液在微波辐射条件下进行老化,溶剂的极性对前躯体物相组成及催化剂结构影响显著。随着溶剂极性的增大,Zn2+/Cu2+取代Cu2(CO3)(OH)2/Zn5(CO3)2(OH)6中Cu2+/Zn2+的取代反应增强,使得前躯体中(Cu,Zn)5(CO3)2(OH)6和(Cu,Zn)2(CO3)(OH)2物相的含量增多,结晶度提高,导致烧后CuO/ZnO/Al2O3催化剂中CuO-ZnO协同作用增强,且CuO晶粒减小,表面Cu含量增加,催化剂活性和稳定性提高。水溶剂的极性最大,制备的催化剂活性和稳定性最好,甲醇的时空收率(STY)和平均失活率分别为320 mg.g-1.h-1和0.11%.d-1。  相似文献   

13.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

14.
The effects of the addition of ceria and zirconia on the structural properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) are studied. Ceria and zirconia are deposited by using two preparation methods. Method I involves the deposition of ceria on γ‐Al2O3 from Ce(acac)3, and the rhodium metal is subsequently added, whereas method II is based on a controlled surface reaction technique, that is, the decomposition of metal–organic M(acac)x (in which M=Ce, x=3 and M=Zr, x=4) on Rh/γ‐Al2O3. The structures of the prepared catalyst materials are characterized ex situ by using N2 physisorption, transmission electron microscopy, high‐angle annular dark‐field scanning transmission election microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy (XPS), and X‐ray absorption fine structure spectroscopy (XAFS). All supported rhodium systems readily oxidize in air at room temperature. By using ceriated and zirconiated precursors, a larger rhodium‐based metallic core fraction is obtained in comparison to the undoped rhodium catalysts, suggesting that ceria and zirconia protect the rhodium particles against extensive oxidation. XPS results indicate that after the calcination and reduction treatments, a small amount of chlorine is retained on the support of all rhodium catalysts. EXAFS analysis shows significant Rh? Cl interactions for Rh/Al2O3 and Rh/CeOx/Al2O3 (method I) catalysts. After reaction with H2/He in situ, for series of samples with 1.6 wt % Rh, the EXAFS first shell analysis affords a mean size of approximately 30 atoms. A broader spread is evident with a 4 wt % rhodium loading (ca. 30–110 atoms), with the incorporation of zirconium providing the largest particle sizes.  相似文献   

15.
CuO/ZnO nanocomposites were synthesized on Al2O3 substrates by a hybrid plasma‐assisted approach, combining the initial growth of ZnO columnar arrays by plasma‐enhanced chemical vapor deposition (PE‐CVD) and subsequent radio frequency (RF) sputtering of copper, followed by final annealing in air. Chemical, morphological, and structural analyses revealed the formation of high‐purity nanosystems, characterized by a controllable dispersion of CuO particles into ZnO matrices. The high surface‐to‐volume ratio of the obtained materials, along with intimate CuO/ZnO intermixing, resulted in the efficient detection of various oxidizing and reducing gases (such as O3, CH3CH2OH, and H2). The obtained data are critically discussed and interrelated with the chemical and physical properties of the nanocomposites.  相似文献   

16.
采用浸渍法制备了单一载体(Al2O3、ZrO2、CeO2)和ZrO2、CeO2改性的Al2O3复合载体的Ni催化剂,考察了在甲烷部分氧化制备合成气反应中的催化性能。通过N2-物理吸附、H2程序升温还原、X射线衍射、NH3程序升温脱附和程序升温氧化等技术对催化剂进行了表征。结果表明,在单一载体催化剂中,Ni/Al2O3具有较大的比表面积,其初始反应活性较高,但该催化剂表面易形成大量的积炭而快速失活。Ni/ZrO2和Ni/CeO2催化剂比表面积较小,活性金属Ni在其表面分散性差,催化剂具有较低的CH4转化率。而CeO2和ZrO2改性的Al2O3复合载体催化剂,具有较大的比表面积,反应活性明显高于单一载体催化剂。CeO2-Al2O3复合载体催化剂具有最高的反应活性和较好的反应稳定性。同时表明,含CeO2催化剂反应后表面积炭较少,CeO2的储放氧功能增强了催化剂对O2的活化,提高催化剂活性的同时,可以抑制积炭的生成。  相似文献   

17.
Pd@CeO2 core–shell nanostructures with a tunable Pd core size, shape, and nanostructure as well as a tunable CeO2 sheath thickness were obtained by a biomolecule‐assisted method. The synthetic process is simple and green, as it involves only the heating of a mixture of Ce(NO3)3, l ‐arginine, and preformed Pd seeds in water without additives. Importantly, the synthesis is free of thiol groups and halide ions, thus providing a possible solution to the problem of secondary pollution by Pd nanoparticles in the sheath‐coating process. The Pd/CeO2 nanostructures can be composited well with γ‐Al2O3 to create a heterogeneous catalyst. In subsequent tests of catalytic NO reduction by CO, Pd@CeO2/Al2O3 samples based on Pd cubes (6, 10, and 18 nm), Pd octahedra (6 nm), and Pd cuboctahedra (9 nm) as well as a simply loaded Pd cube (6 nm)–CeO2/Al2O3 sample were used as catalysts to investigate the effects of the Pd core size and shape and the hybrid nanostructure on the catalytic performance.  相似文献   

18.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

19.
《中国化学快报》2021,32(11):3435-3439
A facile hydrothermal method was applied to gain stably and highly efficient CuO-CeO2 (denoted as Cu1Ce2) catalyst for toluene oxidation. The changes of surface and inter properties on Cu1Ce2 were investigated comparing with pure CeO2 and pure CuO. The formation of Cu-Ce interface promotes the electron transfer between Cu and Ce through Cu2+ + Ce3+ ↔ Cu+ + Ce4+ and leads to high redox properties and mobility of oxygen species. Thus, the Cu1Ce2 catalyst makes up the shortcoming of CeO2 and CuO and achieved high catalytic performance with T50 = 234 °C and T99 = 250 °C (the temperature at which 50% and 90% C7H8 conversion is obtained, respectively) for toluene oxidation. Different reaction steps and intermediates for toluene oxidation over Cu1Ce2, CeO2 and CuO were detected by in situ DRIFTS, the fast benzyl species conversion and preferential transformation of benzoates into carbonates through C=C breaking over Cu1Ce2 should accelerate the reaction.  相似文献   

20.
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO2(111), TiO2(110) and Al2O3(001) surfaces. The heterogeneous system Ru1/CeO2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO2(110) and Al2O3(001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru1/CeO2 exhibits good catalytic activity for CO oxidation via the Langmuir–Hinshelwood mechanism, thus is a promising single‐atom catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号