首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
In this study, the performances of four ionic-liquid-based microextraction methods, ionic-liquid-based dispersive liquid–liquid microextraction (IL-DLLME), ionic-liquid-based ultrasound-assisted emulsification microextraction (IL-USA-ME), temperature-controlled ionic-liquid dispersive liquid-phase microextraction (TC-IL-DLME), and ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid-phase microextraction (USA-TC-IL-DLME), were investigated for extraction of three bioactive compounds (anethole, estragole, and anisaldehyde) from different plant extracts and human urine. Anethole and estragole were chosen because they can alter cellular processes positively or negatively, and an efficient method is needed for their extraction and sensitive determination in the samples mentioned. Because there is no previous report on the separation of anethole and estragole (structural isomers), first, simultaneous gradient elution and flow programming were used. The microextraction methods were then applied and compared for analysis of these compounds in plant extracts and human urine by use of high-performance liquid chromatography (HPLC). The effect of conditions on extraction efficiency was studied and under the optimum conditions, the best enrichment factors (58–64), limits of detection (14–18 ng mL?1), limits of quantification (47–60 ng mL?1), and recovery (94.4–101.7 %) were obtained by use of USA-TC-IL-DLME. The optimized conditions were used to determine anethole, estragole, and para-anisaldehyde in fennel, anise, and tarragon extracts and in human urine.  相似文献   

2.
《Analytical letters》2012,45(9):1528-1540
A versatile, sensitive, and green method based ultrasound-assisted, temperature-controlled, dispersive liquid–liquid microextraction with an ionic liquid and chemiluminescence detection was used for the determination of copper(II) at the ultra-trace level. After complexation by dithizone, copper(II) was extracted into the ionic liquid. Using high temperature and ultrasonic agitation, the copper complex easily migrated into the ionic liquid phase because of the larger contact area. After back extraction, the determination was performed by chemiluminescence based on the catalyzing effect of copper(II) on the decomposition of hydrogen peroxide with rhodamine B. Important parameters that affected the extraction efficiency and chemiluminescence intensity were optimized. Under the optimum conditions, a limit of detection for copper of 0.8 ng L?1 was obtained with a linear calibration relationship. The method was applied to analyze environmental water samples for copper(II) with satisfactory results.  相似文献   

3.
A simple and efficient liquid-phase microextraction technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of iron and copper in real samples. 2-Mercaptopyridine n-oxide was used as chelating agent and 1-dodecanol was selected as extraction solvent. The factors influencing the complex formation and extraction were optimized. Under optimum conditions, an enrichment factor of ~13 was obtained for both iron and copper from only 6.7 mL of aqueous phase. The analytical curves were linear between 40–800 and 20–1,200 μg L?1 for iron and copper respectively. Based on three SD of the blank, the detection limits were 8.6 and 4.1 μg L?1 for iron and copper respectively. The relative SDs for ten replicate measurements of 500 μg L?1 of metal ions were 2.9 and 1.2 for iron and copper respectively. The proposed method was successfully applied for determination of iron and copper in environmental waters and some food samples including chess, rice, honey and powdered milk. Finally, method validation was made using rock certified reference material. A student’s t test indicated that there was no significant difference between experimental results and certified values.  相似文献   

4.
《Analytical letters》2012,45(2):262-272
Abstract

Hydrophobic deep eutectic solvents (DESs) were synthesized and developed for the preconcentration of three chlorophenols from wastewater by dispersive liquid–liquid microextraction (DLLME). The analyte concentrations were determined by high-performance liquid chromatography (HPLC). The hydrophobic DESs were prepared with the combination of hydrogen bond donors of decanoic acid or octanoic acid with different hydrogen bond acceptors of quaternary ammonium salts of tetrabutylammonium chloride, tetraoctylammonium chloride, methyltrioctylammonium chloride, and tetraheptylammonium chloride). Following the study of the stability and characterization by Fourier transform infrared spectroscopy, the hydrophobic DESs were developed as extractants and employed for the removal of 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. Using hydrophobic DESs as the microextraction solvents, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH, and time of the extraction procedure. Under the optimized conditions, good recoveries from 90.8% to 93.0% were obtained for the three chlorophenols. The limits of detection were less than 0.05?µg/mL with relative standard deviations between 1.8% and 3.1%. The method was applied for the isolation and determination of synthetic chlorophenols in wastewater.  相似文献   

5.
For the first time, the application of polytetrafluoroethylene powder as an extractant phase collector or holder in liquid‐phase microextraction has been developed. For this purpose, the analytical performances of two different ways of applying polytetrafluoroethylene powder in microextraction methods including polytetrafluoroethylene physisorption‐assisted emulsification microextraction and dispersive liquid‐phase microextraction via polytetrafluoroethylene extractant phase holders have been compared for analysis of aliphatic hydrocarbons in aqueous phases. Under the same conditions, the former showed better extraction efficiencies over the latter and as a result, it was applied as preconcentration and cleanup step in the analysis of aliphatic hydrocarbons in sediment samples followed by gas chromatography analysis. The linearity of the polytetrafluoroethylene physisorption‐assisted emulsification microextraction method was obtained over a range of 3.7 and 2000 ng/g (R 2 > 0.993). The relative standard deviations were less than 6.5% (n = 3). The limits of detection and quantification obtained by this method were 1.1–9.0 and 3.7–30 ng/g, respectively, indicating that satisfactory results were achieved by the procedure.  相似文献   

6.
Three modes of liquid–liquid based microextraction techniques – namely auxiliary solvent‐assisted dispersive liquid–liquid microextraction, auxiliary solvent‐assisted dispersive liquid–liquid microextraction with low‐solvent consumption, and ultrasound‐assisted emulsification microextraction – were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound‐assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10?5 mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02–0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples.  相似文献   

7.
We describe a simple method for the simultaneous determination of organolead and organomanganese compounds in seawater samples. It is based on ultrasound-assisted emulsification microextraction. Trimethyllead, triethyllead, tetraethyllead, cyclopentadienylmanganese tricarbonyl and its methyl derivative were separated and determined using gas chromatography and mass spectrometry. Trimethyllead and triethyllead were derivatized with sodium tetraphenylborate before being submitted to the preconcentration step. Detection limits ranged from 7.0 to 41 ng L?1 depending on the compound. Recoveries ranged from 84 to 118 %, depending on the compound and the sample analyzed. Seawater samples were collected at different sites of the Cartagena Bay and none of the target analytes were found at levels above the corresponding detection limits.
Figure
The most relevant organomanganese and organolead compounds can be monitorized in seawaters by using a relatively simple instrumentation (Gas chromatography–mass spectrometry). Advantage is taken of ultrasound-assisted emulsification microextraction that involves minimal amounts of organic solvents  相似文献   

8.
A new up-and-down shaker-assisted dispersive liquid–liquid microextraction (UDSA-DLLME) for extraction and derivatization of five chlorophenols (4-chlorophenol, 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,6-trichloro-phenol, and pentachlorophenol) has been developed. The method requires minimal solvent usage. The relatively polar, water-soluble, and low-toxicity solvent 1-heptanol (12 μL) was selected as the extraction solvent and acetic anhydride (50 μL) as the derivatization reagent. With the use of an up-and-down shaker, the emulsification of aqueous samples was formed homogeneously and quickly. The derivatization and extraction of chlorophenols were completed simultaneously in 1 min. The common requirement of disperser solvent in DLLME could be avoided. After optimization, the linear range covered over two orders of magnitude, and the coefficient of determination (r 2) was greater than 0.9981. The detection limit was from 0.05 to 0.2 μg L?1, and the relative standard deviation was from 4.6 to 10.8 %. Real samples of river water and lake water had relative recoveries from 90.3 to 117.3 %. Other emulsification methods such as vortex-assisted, ultrasound-assisted, and manual shaking-enhanced ultrasound-assisted methods were also compared with the proposed UDSA-DLLME. The results revealed that UDSA-DLLME performed with higher extraction efficiency and precision compared with the other methods.  相似文献   

9.
A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min−1, auxiliary gas flow of 0.2 L min−1 and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min).  相似文献   

10.
A method was developed for the determination of gold ion in water samples using microextraction based on the ultrasound-assisted emulsification of solidified floating organic drops, followed by the flame atomic absorption spectrometry. N-(4-{4-[(anilinocarbothioyl)amino]benzyl}phenyl)-N-phenylthiourea was used as chelating agent. The parameters affecting the extraction and complex formation (including the type and volume of the extracting solvent, time of sonication and centrifugation, pH, amount of the chelating agent, and sample ionic strength) were optimized. Under the optimum conditions, the calibration graph is linear in the range from 1.5 to 400 ng mL?1, with a limit of detection of 0.45 ng mL?1. The relative standard deviation for ten replicate determinations of gold ion in a concentration of 175 ng mL?1 was 1.7%. The procedure was successfully applied to the determination of gold in water samples, in pharmaceutical and synthetic samples, and in a standard reference material.
Figa
The schematic procedure of the ultrasound-assisted emulsification solidified floating organic drop microextraction is shown in above figure from A to E.  相似文献   

11.
Novel ultrasonically enhanced supramolecular solvent microextraction (USESSM) then high-performance liquid chromatography with ultraviolet detection have been used for extraction and determination of phthalates in water and cosmetics. Coacervates consisting of decanoic acid-based nano-structured aggregates, specifically reverse micelles, have been used the first time as solvents for ultrasound-assisted emulsification microextraction (USAEME). Sonication accelerated mass transfer of the target analytes into the nano-structured solvent from the aqueous sample, thus reducing extraction time. Several conditions affecting extraction efficiency, for example the concentrations of major components of the supramolecular solvent (tetrahydrofuran and decanoic acid), sample solution pH, salt addition, and ultrasonication time, were investigated and optimized. Under the optimum conditions, preconcentration of the analytes ranged from 176 to 412-fold and the linear range was 0.5–100 μg?L?1, with correlation coefficients (R 2)?≥?0.9984. The detection sensitivity of the method was excellent, with limits of detection (LOD, S/N?=?3) in the range 0.10–0.70 μg?L?1 and precision in the range 4.1–11.7 % (RSD, n?=?5). This method was successfully used for analysis of phthalates in water and cosmetics, with good recovery of spiked phthalates (91.0–108.5 %).  相似文献   

12.
A procedure for the determination of less polar heterocyclic amines in meat extracts using solid phase microextraction (SPME) coupled to high-performance liquid chromatography (HPLC) with fluorescence detection is presented. Analytes were first extracted from the samples using methanol/NaOH by an ultrasound-assisted method, and then concentrated on a Carbowax-templated resin (CW-TPR) SPME fiber. The extraction conditions such as extractant mixture composition, extraction time and extractions number, were optimized and the need of an extract freezing step previous to SPME is discussed. The detection limits under optimal conditions are in the range of 0.28-1.1 ng g−1. The method was applied to the determination of less polar heterocyclic amines in four commercial meat extracts. Recovery values obtained are higher than 60% for the majority of amines.  相似文献   

13.
《Analytical letters》2012,45(7):1242-1260
A novel, practical, and environmentally friendly technique, termed concentrated sulfuric acid cleanup and ultrasound-assisted surfactant-enhanced emulsification microextraction (CSAC-UASEM), was combined with HPLC for the preconcentration and determination of five phenolics in water and Arthrospira (Spirulina) platensis samples. The main advantages include that the concentrated sulfuric acid is used to decrease macromolecular interferences prior to microextraction and, unlike dispersive liquid–liquid microextraction procedures, no dispersive organic solvent is required. Chloroform and sodium dodecyl sulfate were used as the extraction solvent and emulsifier, respectively. The algal cell preparation and CSAC-UASEM procedure parameters, including selection of cleanup method, ultrasound power, cell cytocylasis time, type and volume of extraction solvent, extraction temperature, ultrasound-extracted time, and sample pH, were optimized. At the fortification levels of 1.0 and 10.0 µg/L, the enrichment factors of analytes were in the range of 201.38 to 269.24. The percent extraction ranged from 71.57% to 107.42% in environmental Arthrospira-350, -793, and -834 samples, whereas the range was from 74.17% to 106.72% in water samples. The limits of detection (at S/N = 3) were 0.02 to 0.04 µg/L (except for 4-bromobisphenol A of 0.10 µg/L). These values indicate an approximately ten-fold improvement compared with the values reported by other techniques. In summary, the CSAC-UASEM sample preparation technique has great potential in the routine determination of trace phenolics in environmental waters and aquatic biological samples.  相似文献   

14.
In this study, ionic liquid (IL) supported magnetic dispersive solid‐phase microextraction was developed and a systematic investigation was conducted on imidazolium ILs for their extraction performance. This nano‐based pretreatment procedure was then applied for the determination of acaricides in fruit juice samples for the first time. A feature of this technique is that the commonly laborious chemical modification of magnetic nanoparticles (MNPs) was skillfully circumvented. Because of the combination of ILs, dispersive liquid–liquid microextraction, and dispersive MNP solid‐phase microextraction, the extraction efficiency can be significantly improved using commercial MNPs. Parameters of the extraction method were investigated by one‐factor‐at‐a‐time approach. The optimal experimental conditions were as follows: emulsification for 2 min by sonication with the addition of 50 μL [C6MIM][NTf2] in the dispersive liquid–liquid microextraction step and vortexing for 90 s after adding 40 mg spherical barium ferrite nanoparticles (20 nm). The desorption time was 2 min. Good linearity (0.5–500 ng/mL) and detection limits within the range of 0.05–0.53 ng/mL were achieved. The application of the proposed method was demonstrated by the analysis of real fruit juice samples, in which recoveries between 85.1 and 99.6% were obtained.  相似文献   

15.
An in-situ formed polymer–based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid–liquid microextraction was developed for the extraction of neonicotinoid pesticides from milk samples. The extracted analytes were determined using high-performance liquid chromatography–diode array detector. In this approach, after precipitating the proteins of milk using a zinc sulfate solution, the supernatant phase (containing sodium chloride) was transferred into another glass test tube, and a homogenous solution of polyvinylpyrrolidone and a suitable water-miscible organic solvent was rapidly injected into it. By this step, the polymer particles were re-produced and the analytes were extracted onto the sorbent surface. In the following step, the analytes were eluted with an appropriate organic solvent to use in the following solidification of floating organic droplet-based dispersive liquid–liquid microextraction step that was done to acquire the low limits of detection. Under the optimized conditions, satisfactory results consisting of low limits of detection (0.13–0.21 ng/ml) and quantification (0.43–0.70 ng/ml), high extraction recoveries (73%–85%), and enrichment factors (365–425), and good repeatability (relative standard deviations equal or less than 5.1% and 5.9% for intra- and inter-day precisions, respectively) were obtained.  相似文献   

16.
Ewa Stanisz 《Analytical letters》2017,50(18):2884-2899
Ligandless, task-specific ionic liquid based ultrasound-assisted dispersive liquid–liquid microextraction (TSIL-USA-DLLME) was used for preconcentration of cobalt ions in food and water samples and in vitamin supplements before analysis by electrothermal atomic absorption spectrometry. The reported method is free of toxic volatile organic solvents and does not require the use of a back-extraction step. The dispersion of extractant was achieved with the use of ultrasound. A TSIL, trioctylmethylammonium thiosalicylate (TOMATS), was served as both the extraction and complexing agent. After microextraction, the TOMATS phase was separated by centrifugation and dissolved in ethanol before analysis. Selected parameters affecting the microextraction including the pH of the sample, the volume of the ionic liquid, the ultrasonication time, centrifugation parameters, and the influence of ionic strength were optimized. The limit of detection was 0.011?ng?mL?1 for cobalt ions. The achieved preconcentration factor was 24. The relative standard deviations for the determination of analyte in the real samples were 3–24%. The accuracy of this method was evaluated by the extraction and determination of the analyte in several certified reference materials including INCT-SBF-4 (soya bean flour), INCT-TL-1 (tea leaves), ERM-CAO11b (hard drinking water), INCT-MPH-2 (mixed Polish herbs), TMDA-54.5 (Lake Ontario Water), and NIST 1643e. The measured cobalt contents were in satisfactory agreement with the certified concentrations based on Student’s t-test at the 95% confidence level. The presented method has been successfully applied for the determination of analyte in real samples that include tea, lake water, and vitamin supplements.  相似文献   

17.
An emulsification liquid phase microextraction followed by on-line phase separation coupled to high performance liquid chromatography (HPLC) is introduced based on a novel idea for the separation of dispersed organic phase from aqueous phase. In this method, the dispersed organic extraction phase was filtered using an in-line filter and it was separated from the water sample. The new approach is simple and, in addition to improving some limitations of the conventional emulsification liquid phase microextraction, eliminates the need for centrifugation in the phase separation step.  相似文献   

18.
Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel‐type ferrite nanoparticles MFe2O4 (M=Mg, Zn, Co, Ni). The best results for phase‐pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid‐phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase‐pure spinel‐type ferrite particles are thoroughly characterized by X‐ray diffraction, diffuse‐reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.  相似文献   

19.
A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L?1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L?1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.  相似文献   

20.
In this work, a simple, practical and environmentally friendly sample pre-treatment method, ultrasound-assisted surfactant-enhanced emulsification microextraction coupled with high performance liquid chromatography–diode array detector/electrospray ionisation mass spectrometry, was developed to determine diethofencarb and pyrimethanil residues in water and fruit juice samples. Tween 80 was used as an emulsifier and carbon tetrachloride was chosen as the extraction solvent, and no dispersive organic solvent was needed, which is typically required in common dispersive liquid–liquid microextraction methods. Several variables, such as the type and volume of extraction solvent and surfactant, extraction temperature and ultrasound extraction time were investigated and optimised. Under optimal conditions, the enrichment factors were 265 and 253 for diethofencarb and pyrimethanil, respectively. The limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N), were 0.01 μg L−1 for both diethofencarb and pyrimethanil. The linearity of the method was obtained in the range of 0.05–2000 μg L−1, with correlation coefficients of 0.9994–0.9998. The water (at fortified levels of 0.1 and 1.0 μg L−1) and fruit juice samples (at fortified levels of 0.1 and 1.0 μg L−1) were successfully analysed using the proposed method, and the relative recoveries were in the range of 88–114%, 93–111%, 86–117% and 94–101%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号