首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Helical 1,2-ethylene-silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like mesopores inside were prepared according to literature procedures. After carbonization, helical carbon/ silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like micropores inside were obtained. The morphologies and pore architectures of the carbon]silica nanofibers were characterized using transmission electron microscopy, field-emission scanning electron microscopy, powder X-ray diffraction and N2 sorptions. Although the mesopores inside shrank into micropores, the helical nanostructure remained. Moreover, several carbon/silica nanofibers with lamellar mesopores on the surfaces and concentric circular micropores inside were also obtained. After being calcined in air, helical silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like micropores inside were produced as well.  相似文献   

2.
The morphology, pore architecture and crystallinity of the mesoporous 1,4‐phenylene‐silicas were controlled using the mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). When the SDS/CTAB molar ratio increased from 0 to 1.0, the morphology of the mesoporous 1,4‐phenylene‐silicas changed in a sequence of sphere, hexagonal short rod, worm‐like, bent flake and flower‐like structure; the pore architecture of them changed from a hexagonal arranged tubular structure to a lamellar one; and the organization of the smallest repeat units within the wall changed from a random structure to a crystalline structure. At the SDS/CTAB molar ratios of 0.3 and 0.5, 1,4‐phenylene‐silica nanofibers with lamellar mesopores outside and tubular pore channels inside were obtained. The lamellar mesopores should be formed by merging the rod‐like micelles during the reaction process.  相似文献   

3.
Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single‐templating method using the self‐assemblies of a chiral low‐molecular‐weight amphiphile,L‐18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X‐ray diffractometer and N2 sorption. The formation of them was clearly shown in the field‐emission electron microscopy images which were taken at a low voltage. Moreover, transmission electron microscopy images taken after different reaction times indicated a cooperative self‐assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons.  相似文献   

4.
The morphologies and pore architectures of mesoporous ethenylene‐silica were controlled using cetyltrimethylammonium bromide (CTAB) as template and (S)‐β‐citronellol as a co‐structure‐directing agent under basic conditions. When the (S)‐β‐citronellol/CTAB molar ratios are in the range of 0.75–2.0, helical nanofibers were obtained. With increasing the (S)‐β‐citronellol/CTAB molar ratio, the lengths of the nanofibers increases. Lamellar mesopores were identified on the surfaces of the nanofibers prepared in the (S)‐β‐citronellol/CTAB molar ratio range of 1.5–2.0. At the (S)‐β‐citronellol/CTAB molar ratio of 2.5:1, nanoparticles with nanoflakes on the surfaces were obtained. The field emission scanning electron microscopy images taken after different reaction times indicated that the helical pitches of the nanofibers decreased with increasing the reaction time. Helical 1,4‐phenylene‐silica and methylene‐silica nanofibers were also prepared. The results indicated that the morphologies and pore architectures of the obtained organic‐inorganic hybrid silicas are also sensitive to the hybrid silica precursors. Helical ethenylene‐silica nanofibers with lamellar mesopores on their surfaces can be also prepared using the mixtures of CTAB and racemic citronellol within a narrower citronellol/CTAB molar ratio range.  相似文献   

5.
通过溶胶-凝胶法以十八烷基三甲基溴化铵(STAB)自组装体为模板和非离子型联二萘酚衍生物(S)作为手性添加剂制备螺旋介孔二氧化硅。样品利用扫描电镜、透射电镜、X-光衍射以及氮气吸附-脱附进行了表征。结果表明:反应混合物中S与STAB的物质的量之比对介孔二氧化硅的形貌及孔结构有很大影响。改变nSnSTAB比,从0.1:1到0.4:1时,其结构从螺旋纳米棒状变为表面具有环形层状孔的纳米棒,孔道由沿着纳米棒长轴方向转变为同心环状。当nSnSTAB=0.5:1时,得到类似皱缩花瓣的纳米颗粒。该手性添加剂的引入并没有改变左右手螺旋纳米棒的比例。  相似文献   

6.
通过溶胶-凝胶法以十八烷基三甲基溴化铵(STAB)自组装体为模板和非离子型联二萘酚衍生物(S)作为手性添加剂制备螺旋介孔二氧化硅。样品利用扫描电镜、透射电镜、X-光衍射以及氮气吸附-脱附进行了表征。结果表明:反应混合物中S与STAB的物质的量之比对介孔二氧化硅的形貌及孔结构有很大影响。改变nS∶nSTAB比,从0.1∶1到0.4∶1时,其结构从螺旋纳米棒状变为表面具有环形层状孔的纳米棒,孔道由沿着纳米棒长轴方向转变为同心环状。当nS∶nSTAB=0.5∶1时,得到类似皱缩花瓣的纳米颗粒。该手性添加剂的引入并没有改变左右手螺旋纳米棒的比例。  相似文献   

7.
A templating strategy using crosslinked and functionalized polymeric beads to synthesize silica microspheres with a broad pore size distribution has been developed. The polymer/silica hybrid microspheres were prepared by utilizing the combination of a templating weak cation exchange resin, a structure‐directing agent N‐trimethoxysilylpropyl‐N,N,N‐trimethylammonium chloride, and a silica precursor tetraethyl orthosilicate. The silica microspheres were then obtained after calcinating the hybrid microspheres. The as‐prepared materials were characterized by scanning electron microscopy, mercury intrusion porosimeter, and thermal gravimetric analysis. The results showed that the starting templating beads were about 5 μm in diameter and the formed silica microspheres were less than 3 μm with a pore size range of 10–150 nm, some pores were even extended to beyond 250 nm. It was demonstrated that cellulose tris(3,5‐dimethylphenylcarbamate) was readily coated onto the surface of the as‐synthesized silica microspheres without any additional surface pretreatment. The coated silica microspheres were uniformly dispersed even with high loading of the chiral stationary phase, which exhibited high resolution chiral separations in high‐performance liquid chromatography.  相似文献   

8.
Helical mesoporous silica nanorods were prepared using cetyltrimethylamrnonium bromide and achiral alcohols as the co-structure-directing agents.They were characterized using field-emission scanning electron microscopy,transmission electron microscopy,nitrogen sorptions,and small angle X-ray diffraction.The length of the silica nanorods increases with increasing the length of the alcohols.When n-heptanol and n-octanol were used,helical mesoporous silica nanorods with lamellar mesopores on the surfaces were obtained.  相似文献   

9.
Ordered mesoporous silica nanoparticles with pore diameter of 5 nm were synthesized by modification of the sol‐gel synthesis method. Post‐synthesis two‐step grafting of thermoresponsive poly(N‐isopropylacrylamide) inside the mesopores of the nanoparticles was carried out by distillation–precipitation polymerization of the methacryloxy‐functionalized mesoporous nanoparticles with N‐isopropylacrylamide monomer. A precise control on the quantity of the grafted polymer was achieved by changing the ratio of monomer to methacryloxy‐functionalized nanoparticles. The polymer‐grafted hybrid nanoparticles obtained were fully characterized by infrared spectroscopy, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, thermal, and gas‐volumetric analyses, which clearly showed presence and thermoresponsive behavior of the polymer inside the mesopores with the preservation of the characteristic mesoporous structure of the nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Summary: We have prepared hexa‐p‐phenylene based rod‐coil molecules with identical coil volume fractions, but different poly(propylene oxide) (PPO) coil architectures (linear versus dibranched), and investigated their self‐assembling behavior in the solid state by small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) techniques. Rod‐coil molecules with a linear PPO coil showed a honeycomb‐like lamellar assembly of rod segments with hexagonally arrayed PPO coil perforations. In contrast, the rod‐coil molecules with dibranched PPO coils self‐organized into rod bundles with a body centered tetragonal symmetry surrounded by a PPO coil matrix. These results demonstrate that the steric hindrance at the rod/coil interface arising from coil architectural variation is a dominant parameter governing supramolecular rod assembly in the rod‐coil system.

TEM images and schematic illustrations of the self‐assembled structures of rod‐coil molecules with linear (left) and dibranched (right) PPO coils, respectively.  相似文献   


11.
Amphiphilic coil‐rod‐coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self‐organize into various supramolecular aggregates in bulk and in aqueous solutions. In this paper, we report the self‐assembling behavior of amphiphilic coil‐rod‐coil molecular isomers. These molecules consist of biphenyl and phenyl units connected by ether bonds as the rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization of 7 and 12 as the flexible chains. Their aggregation behavior was investigated by differential scanning calorimetry, thermal optical polarized microscopy, small‐angle X‐ray scattering spectroscopy, and transmission electron microscopy. The results imply that the molecular structure of the rod building block and the length of the PEO chains dramatically influence the creation of supramolecular aggregates in bulk and in aqueous solutions. In the bulk state, these molecules self‐organize into a hexagonal perforated lamellar and an oblique columnar structure, respectively, depending on the sequence of the rod building block. In aqueous solution, the molecule with a linear rod segment self‐assembles into sheet‐like nanoribbons. In contrast, its isomer, with a rod building block substituted at the meta‐position of the aryl group, self‐organizes into nanofibers. This is achieved through the control of the non‐covalent interactions of the rod building blocks.  相似文献   

12.
Monolithic pieces of hierarchically structured silica, containing both periodic macropores and mesopores with well-controlled architecture, are synthesized by dual templating methods. Colloidal crystal templating with close-packed arrays of poly(methyl methacrylate) spheres yields regular, highly interconnected macropores a few hundred nanometers in diameter, and templating with nonionic surfactants produces mesoporosity (2.5-5.1 nm pore diameters) in the macropore walls. Several distinct mesostructures can be achieved within the silica skeleton, depending on the choice of surfactant, co-surfactant, and processing conditions. In the three-dimensional (3D) confinement of the colloidal crystal template, wormlike channels, cubic (Pm3n), or two-dimensional (2D) hexagonal (P6mm) mesostructures are produced with the surfactant Brij 56 (C16H33(OCH2CH2)nOH (n approximately 10) and dodecane as cosurfactant. In the 2D hexagonal structure, channels are oriented perpendicular to the polymer spheres, thereby connecting adjacent macropores through the silica walls. This orientation contrasts with channel alignment parallel to latex spheres when the polymeric surfactant Pluronic P123 (EO20PO70EO20) is used. On the basis of high-resolution 3D transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, and nitrogen sorption measurements, structural and textural properties of the monoliths are described in detail as a function of the synthesis parameters. The control over the mesoarchitecture of these silica-surfactant systems in 3D confinement is explained by considering the relative dimensions of the mesostructures with respect to the interstitial space in the latex template, interfacial interactions, entropic effects, and structural frustration.  相似文献   

13.
Mesoporous vanadium oxide (V2O5) thin films were deposited electrochemically onto indium tin oxide-coated glass substrates from an aqueous solution of vanadyl sulfate using CTAB (hexadecyltrimethylammonium bromide) as a templating agent. For comparison, a control sample was electrodeposited without CTAB templating. Transmission electron microscopy and small angle X-ray diffraction indicated the presence of mesoporosity with a well-ordered lamellar phase in the electrodeposited films. The crystallinity of the V2O5 thin films was confirmed by X-ray diffraction. Cyclicvoltammetry and chronoamperometry were used to measure electrochemical properties of synthesized films. The mesoporous films prepared with CTAB templating had a much higher capacity and lithium-ion diffusion rate than the non-porous electrode prepared without CTAB templating.  相似文献   

14.
Silica particles with lamellar and wormhole-like bi-modal mesopores have been synthesized using anionic surfactant (N-lauroylsarcosine sodium) as the template. The particles with diameters of 300―500 nm possess bi-modal mesopores with pore sizes of 3 nm and 12 nm, which were ascribed to the disordered wormhole-like mesophase and lamellar mesophase, respectively. The BET surface area of the particles was 536 m2/g and the pore volume was 0.83 cm3/g. The lamellar mesophase and cylindrical mesophase were formed...  相似文献   

15.
Mesoporous nanocomposite materials in which nanoscale zirconia (ZrO(2)) particles are embedded in the carbon skeleton of a templated mesoporous carbon matrix were prepared, and the embedded zirconia sites were used to accomplish chemical functionalization of the interior surfaces of mesopores. These nanocomposite materials offer a unique combination of high porosity (e.g., ~84% void space), electrical conductivity, and surface tailorability. The ZrO(2)/carbon nanocomposites were characterized by thermogravimetric analysis, nitrogen-adsorption porosimetry, helium pychnometry, powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Comparison was made with templated mesoporous carbon samples prepared without addition of ZrO(2). Treatment of the nanocomposites with phenylphosphonic acid was undertaken and shown to result in robust binding of the phosphonic acid to the surface of ZrO(2) particles. Incorporation of nanoscale ZrO(2) surfaces in the mesoporous composite skeleton offers unique promise as a means for anchoring organophosphonates inside of pores through formation of robust covalent Zr-O-P bonds.  相似文献   

16.
《先进技术聚合物》2018,29(2):989-1001
Herein, a novel method was reported for the use of polyethersulfone (PES) membranes in catalytic reactions with an enhanced distribution and superior catalytic activity of palladium nanoparticles immobilized on the surface of the membranes. For this purpose, the surface of PES membrane was treated with plasma, and subsequently, the consequent oxygen‐containing functional groups were reacted with APTES and 2‐pyridinecarbaldehyde, respectively, to provide sites by which Pd could form complexes. The mean roughness as well as the surface and cross‐sectional morphology were investigated using atomic force microscopy, scanning electron microscopy (SEM), and field‐emission scanning electron microscopy (FESEM), respectively. Furthermore, SEM mapping was used to examine the palladium distribution on the surface of the membranes. Further characterizations of as‐prepared Pd‐loaded PES membranes conducted using EDX, ICP, and XRD analyses. The reduction of p‐nitrophenol to p‐aminophenol was also used as a model reaction to investigate the membranes' performance. The results, analyzed using UV‐Vis instrument, demonstrated that the complete reduction of p‐nitrophenol was achieved at a short time via Pd‐chelated plasma‐treated membrane. Furthermore, the rod‐like and sphere‐like structure of Pd was acquired as a result of palladium chelating with nitrogen‐containing ligands, produced through the reaction between 2‐pyridinecarbaldehyde and (3‐Aminopropyl)triethoxysilane. It was observed that the rod‐like structure of Pd exhibited a trivial catalytic activity in reduction of p‐nitrophenol to p‐aminophenol in contrast with the sphere‐like structure, nonetheless.  相似文献   

17.
Modulation and templating are two synthetic techniques that have garnered significant attention over the last several years for the preparation of hierarchically porous metal–organic frameworks (HP‐MOFs). In this study, by using fatty acids with different lengths and concentrations as dual‐functional modulators/templates, we were able to obtain HP‐MOFs with tunable mesopores that exhibit different pore diameters and locations. We found that the length and concentration of the fatty acids can determine if micelle formation occurs, which in turn dictates the porosity of the resulting HP‐MOFs. The HP‐MOFs with different mesopores differed in their performance in gas uptake and dye adsorption, and the structure–performance relationships were ascribed to the pore diameters and locations. This approach could provide a potentially universal method to efficiently introduce hierarchal mesopores into existing microporous MOF adsorbents with tunable properties.  相似文献   

18.
In this personal account, several key inventions on designing novel microporous and mesoporous materials, and their applications in energy and environmental research are reviewed. Although, crystalline materials with sub‐nanometer pore size regime like zeolites, AlPOs, MOFs, ZIFs etc. are known over the years, silicious and non‐silicious mesoporous materials have revolutionized the research on the materials with nanoscale porosity in last two and half decades. A wide range of inorganic, organic‐inorganic hybrid as well as purely organic mesoporous materials with either periodic or disordered mesopores are known. Apart from conventional hydrothermal syntheses involving soft templating route, hard templating, evaporation induced self‐assembly (EISA), electrochemical or solvothermal (using hydrophilic solvents) synthetic routes are often employed in designing a large spectrum of mesoporous materials. Ease of synthesis using available cheap raw chemicals and versatility in the framework compositions together with the unique surface properties like exceptionally high surface area, pore volume and tunability in pore dimensions have made these materials very exciting to a wide range of researchers working on materials chemistry. Nanoscale porosity in the semiconductor nanomaterials is highly beneficial for the photocatalytic, optoelectronic and related light‐harvesting applications. Their high chemical stability has been explored intensively in designing novel heterogeneous catalysts for the synthesis of biofuels from biomass or CO2 fixation to reactive organic molecules for the synthesis of fine chemicals and fuels, which has a large impact on energy and environmental research for the years to come. Diversity in mesoporous frameworks and their potential applications related to light harvesting, generation of renewable energy and synthesis of value added fine chemicals and fuels through environment friendly routes are mostly focused in this review.  相似文献   

19.
A type of organic–inorganic hybrid material layered crystalline AlSPP (AlSPP) was prepared under simple conditions, completely different to the traditional hydrothermal methods, by the reaction of oligo‐styrenyl phosphonic acid with aluminum acetate and sodium dihydrogen phosphate. The microstructure of AlSPP was characterized by X‐ray diffraction, FT‐IR, atomic absorption spectroscopy, N2 volumetric adsorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Based on the experimental date, the ideal structure model of AlSPP is proposed, which indicated that the layered crystalline AlSPP samples are special lamellar structure with many cavums, holes, channels and ravines on the surface, the interlamellar region and interlayer surfaces of the particles. Therefore AlSPP possesses excellent properties and has potential applications for heterogeneous asymmetric catalyst supports. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
以L-亮氨酸为手性源合成了手性阳离子两亲性小分子化合物L-18Leu6NEtBr,用其自组装体作为模板,氢氧化钠为催化剂,经溶胶-凝胶过程制备出介孔二氧化硅纳米空心球;分析了介孔二氧化硅纳米空心球的尺寸和孔径.结果表明,所制备的二氧化硅空心球直径约100nm;其介孔孔道平行于壳表面,孔径为3.1nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号