首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
[Pd(PPh3)4] catalyzes a Suzuki–Miyaura‐like twofold cross‐coupling sequence between underivatized propargylic diols and either aryl or alkenyl boronic acids to furnish highly substituted 1,3‐dienes. Thus, 2,3‐diaryl‐1,3‐butadienes and their dialkenic congeners ([4]dendralenes) are delivered in a (pseudo)halogen‐free, single‐step synthesis which supersedes existing methods. Allenols are also readily formed. Treatment of these single‐ and twofold cross‐coupled products with acid leads to remarkably short syntheses of highly‐substituted benzofulvenes and aryl indenes, respectively.  相似文献   

9.
A calcium‐catalyzed direct reduction of propargylic alcohols and ethers has been accomplished by using triethylsilane as a nucleophilic hydride source. At room temperature a variety of secondary propargylic alcohols was deoxygenated to the corresponding hydrocarbons in excellent yields. Furthermore, for the first time, a catalytic deoxygenation of tertiary propargylic alcohols was generally applicable. The same protocol was suitable for an efficient reduction of secondary as well as tertiary propargylic methyl, benzyl and allyl ethers. Substrates containing an additional keto‐, ester or secondary hydroxyl function were reduced with exceptional chemoselectivity at the propargylic position.  相似文献   

10.
The palladium(0)‐catalyzed, ligand‐controlled, regioselective addition of diaryl acetonitrile pronucleophiles to propargylic carbonates is reported. Selective formation of either terminal 1,3‐dienyl or propargylated products is proposed to arise from a change in reaction mechanism controlled by the denticity of the coordinating ligand.  相似文献   

11.
12.
Tertiary propargylic sulfones are of significant importance in organic synthesis and medicinal chemistry, but to date no general asymmetric synthesis approach has been developed. We disclose a versatile copper‐catalyzed sulfonylation of propargylic cyclic carbonates using sodium sulfinates that allows the construction of propargylic sulfones featuring elusive quaternary stereocenters. This method provides the first successful example of such an enantioselective propargylic sulfonylation, features high asymmetric induction, wide functional group tolerance, and scalability, and enables attractive product diversification.  相似文献   

13.
The first copper‐catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee.  相似文献   

14.
Ruthenium- and copper-catalyzed propargylic substitution reactions of propargylic alcohol derivatives with N-monosubstituted hydrazones as ambident nucleophiles are achieved in which N-monosubstituted hydrazones exhibit impressive different reactivities depending on different catalytic systems, behaving as carbon-centered nucleophiles to give the corresponding propargylic alkylated products in ruthenium catalysis, or as nitrogen-centered nucleophiles to afford the corresponding propargylic aminated products in copper catalysis. DFT calculations were carried out to investigate the detailed reaction pathways of these two systems. Further transformation of propargylic substituted products affords the corresponding multisubstituted pyrazoles as cyclization products in good to high yields.  相似文献   

15.
The base‐catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1‐disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid–base adduct, [Hbase]+[MeO‐B2pin2]? favored the formation of 1,2,3‐triborylated species from the tertiary allylic alcohols and 1‐propargylic cyclohexanol at 90 °C.  相似文献   

16.
An easy and versatile Cu‐catalyzed propargylic substitution process is presented. Using easily prepared prochiral dichloro substrates, readily available Grignard reagents together with catalytic amount of copper salt and chiral ligand, we accessed a range of synthetically interesting trisubstituted chloroallenes. Substrate scope and nucleophile scope are broad, providing generally high enantioselectivity for the desired 1,3‐substitution products. The enantioenriched chloroallenes could be further transformed into the corresponding trisubstituted allenes or terminal alkynes bearing all‐carbon quaternary stereogenic centers, through the copper‐catalyzed enantiospecific 1,1/1,3‐substitutions. The two successive copper‐catalyzed reactions could be eventually combined into a one‐pot procedure and different desired allenes or alkynes were obtained respectively with high enantiomeric excesses.  相似文献   

17.
Direct coupling of enolizable aldehydes with C‐alkynyl imines is realized affording the corresponding propargylic Mannich adducts of syn configuration, thus complementing previous methods that gave access to the anti‐isomers. The combination of proline and a urea Brønsted base cocatalyst is key for the reactions to proceed under very mild conditions (3–10 mol % catalyst loading, dichloromethane as solvent, ?20 °C, 1.2 molar equivalents of aldehyde) and with virtually total stereocontrol (syn/anti ratio up to 99:1; ee up to 99 %). Some possibilities of further chemical elaboration of adducts are also briefly illustrated.  相似文献   

18.
19.
Using the previously designed biphenyl‐2‐ylphosphine ligand, featuring a remote tertiary amino group, the first gold‐catalyzed intermolecular hydroalkenylation of alkynes has been developed. Synthetically valuable conjugated dienyl alcohols are formed in moderate to good yields. A range of alkenyltrifluoroborates are allowed as the alkenyl donor, and no erosion of alkene geometry and/or the propargylic configuration are detected. DFT calculations confirm the critical role of the remote basic group in the ligand as a general‐base catalyst for promoting this novel gold catalysis with good efficiency.  相似文献   

20.
《中国化学》2017,35(8):1251-1262
An efficient synthesis of (E )‐alken‐1,2,3‐triboronates form readily available propargylic carbonates is described. The reaction enjoys excellent regio‐ and E‐ selectivity and many synthetically useful functional groups can be tolerated. Based on mechanistic studies, a two‐step mechanism via 1,2‐allenyl boronate intermediate is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号