首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

2.
The first example of a transition‐metal‐catalyzed, meta‐selective C H bromination procedure is reported. In the presence of catalytic [{Ru(p‐cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C H bond of 2‐phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one‐pot bromination/arylation and bromination/alkenylation procedures to deliver meta‐arylated and meta‐alkenylated products, respectively, in a single step.  相似文献   

3.
A novel palladium catalyzed direct ortho‐arylation of N‐phenacylpyridinium bromide was developed. The amazing N‐phenacyl group regioselectively activates the C? H bond of pyridine and automatically departs from the arylated products. A kinetic isotope effect study proved that the reaction went through a C? H‐bond activation pathway and 2,6‐diphenylpyridine was produced stepwise from 2‐phenylpyridine.  相似文献   

4.
5.
The reactions of MCl5 or MOCl3 with imidazole‐based pro‐ligand L1H, 3,5‐tBu2‐2‐OH‐C6H2‐(4,5‐Ph21H‐)imidazole, or oxazole‐based ligand L2H, 3,5‐tBu2‐2‐OH‐C6H2(1H‐phenanthro[9,10‐d])oxazole, following work‐up, afforded octahedral complexes [MX(L1, 2)], where MX=NbCl4 (L1, 1 a ; L2, 2 a ), [NbOCl2(NCMe)] (L1, 1 b ; L2, 2 b ), TaCl4 (L1, 1 c ; L2, 2 c ), or [TaOCl2(NCMe)] (L1, 1 d ). The treatment of α‐diimine ligand L3, (2,6‐iPr2C6H3N?CH)2, with [MCl4(thf)2] (M=Nb, Ta) afforded [MCl4(L3)] (M=Nb, 3 a ; Ta, 3 b ). The reaction of [MCl3(dme)] (dme=1,2‐dimethoxyethane; M=Nb, Ta) with bis(imino)pyridine ligand L4, 2,6‐[2,6‐iPr2C6H3N?(Me)C]2C5H3N, afforded known complexes of the type [MCl3(L4)] (M=Nb, 4 a ; Ta, 4 b ), whereas the reaction of 2‐acetyl‐6‐iminopyridine ligand L5, 2‐[2,6‐iPr2C6H3N?(Me)C]‐6‐Ac‐C5H3N, with the niobium precursor afforded the coupled product [({2‐Ac‐6‐(2,6‐iPr2C6H3N?(Me)C)C5H3N}NbOCl2)2] ( 5 ). The reaction of MCl5 with Schiff‐base pro‐ligands L6H–L10H, 3,5‐(R1)2‐2‐OH‐C6H2CH?N(2‐OR2‐C6H4), (L6H: R1=tBu, R2=Ph; L7H: R1=tBu, R2=Me; L8H: R1=Cl, R2=Ph; L9H: R1=Cl, R2=Me; L10H: R1=Cl, R2=CF3) afforded [MCl4(L6–10)] complexes (M=Nb, 6 a – 10 a ; M=Ta, 6 b – 9 b ). In the case of compound 8 b , the corresponding zwitterion was also synthesised, namely [Ta?Cl5(L8H)+] ? MeCN ( 8 c ). Unexpectedly, the reaction of L7H with TaCl5 at reflux in toluene led to the removal of the methyl group and the formation of trichloride 7 c [TaCl3(L7‐Me)]; conducting the reaction at room temperature led to the formation of the expected methoxy compound ( 7 b ). Upon activation with methylaluminoxane (MAO), these complexes displayed poor activities for the homogeneous polymerisation of ethylene. However, the use of chloroalkylaluminium reagents, such as dimethylaluminium chloride (DMAC) and methylaluminium dichloride (MADC), as co‐catalysts in the presence of the reactivator ethyl trichloroacetate (ETA) generated thermally stable catalysts with, in the case of niobium, catalytic activities that were two orders of magnitude higher than those previously observed. The effects of steric hindrance and electronic configuration on the polymerisation activity of these tantalum and niobium pre‐catalysts were investigated. Spectroscopic studies (1H NMR, 13C NMR and 1H? 1H and 1H? 13C correlations) on the reactions of compounds 4 a / 4 b with either MAO(50) or AlMe3/[CPh3]+[B(C6F5)4]? were consistent with the formation of a diamagnetic cation of the form [L4AlMe2]+ (MAO(50) is the product of the vacuum distillation of commercial MAO at +50 °C and contains only 1 mol % of Al in the form of free AlMe3). In the presence of MAO, this cationic aluminium complex was not capable of initiating the ROMP (ring opening metathesis polymerisation) of norbornene, whereas the 4 a / 4 b systems with MAO(50) were active. A parallel pressure reactor (PPR)‐based homogeneous polymerisation screening by using pre‐catalysts 1 b , 1 c , 2 a , 3 a and 6 a , in combination with MAO, revealed only moderate‐to‐good activities for the homo‐polymerisation of ethylene and the co‐polymerisation of ethylene/1‐hexene. The molecular structures are reported for complexes 1 a – 1 c , 2 b , 5 , 6 a , 6 b, 7 a, 8 a and 8 c .  相似文献   

6.
7.
Pd and CO—ureally got me! The title reaction proceeds efficiently at 18 °C under CO (1 atm) with 5 % [Pd(OTs)2(MeCN)2] as precatalyst. Depending on the solvents used, either anthranilates or cyclic imides can be obtained in high yields (see picture, BQ=benzoquinone, Ts=4‐toluenesulfonyl).

  相似文献   


8.
2,4,6‐Trimethoxypyridine is identified as an efficient ligand for promoting a Pd‐catalyzed ortho‐C H amination of both benzamides and triflyl‐protected benzylamines. This finding provides guidance for the development of ligands that can improve or enable PdII‐catalyzed C H activation reactions directed by weakly coordinating functional groups.  相似文献   

9.
10.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

11.
Reaction conditions for the C? C cross‐coupling of O6‐alkyl‐2‐bromo‐ and 2‐chloroinosine derivatives with aryl‐, hetaryl‐, and alkylboronic acids were studied. Optimization experiments with silyl‐protected 2‐bromo‐O6‐methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4‐dioxane as the best conditions for these reactions (dcpf=1,1′‐bis(dicyclohexylphosphino)ferrocene). Attempted O6‐demethylation, as well as the replacement of the C‐6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd‐cleavable groups such that C? C cross‐coupling and O6‐deprotection could be accomplished in a single step. Thus, inosine 2‐chloro‐O6‐allylinosine was chosen as the substrate and, after re‐evaluation of the cross‐coupling conditions with 2‐chloro‐O6‐methylinosine as a model substrate, one‐step C? C cross‐coupling/deprotection reactions were performed with the O6‐allyl analogue. These reactions are the first such examples of a one‐pot procedure for the modification and deprotection of purine nucleosides under C? C cross‐coupling conditions.  相似文献   

12.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C H/P H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

13.
14.
15.
The protonation constants of adenosine 5′‐monophosphate, guanosine 5′‐monophosphate, and inosine 5′‐monophosphate were determined in binary mixtures of H2O containing 0, 10, 15, 20, 25, 30, 35, 40, 45, and 50% MeOH, using a combination of potentiometric and spectrophotometric methods at a constant temperature (25°) and constant ionic strength (0.1 mol?dm?3 NaClO4). The protonation constants were analyzed using the normalized polarity parameter (E ), and Kamlet, Abboud, and Taft (KAT) parameters. A linear correlation of log K vs. the normalized polarity parameter was obtained. Dual‐parameter correlation of log K vs. π* (dipolarity/polarizability) and α (H‐bond‐donor acidity), as well as π* and β (H‐bond‐acceptor basicity) also gives good results in various aqueous organic solvent mixtures. Finally, the results are discussed in terms of the effect of solvent on the protonation equilibria.  相似文献   

16.
The formation of carbon–carbon and carbon–oxygen bonds continues to be an active and challenging field of chemical research. Nanoparticle catalysis has attracted considerable attention owing to its environmentally benign and high activity toward the reactions. Herein, we described a novel and effective nano‐Cu2O‐catalyzed one‐pot domino process for the regioselective synthesis of α‐carbonyl furans. Various electron‐deficient alkynes with 2‐yn‐1‐ols underwent this process smoothly in moderate to good yields in the presence of air at atmospheric pressure. It is especially noteworthy that a novel 2,4,5‐trisubstituted 3‐ynylfuran was formed in an extremely direct manner without tedious stepwise synthesis. Additionally, as all of the starting materials are readily available, this method may allow the synthesis of more complex α‐carbonyl furans. An experiment to elucidate the mechanism suggested that the process involved a carbene intermediate.  相似文献   

17.
We report the synthesis, morphology, and field‐effect‐transistor (FET) characteristics of new acceptor–donor–acceptor conjugated materials that consist of diketopyrrolopyrrole (DPP) acceptor groups and one of four different thiophene moieties, that is, dithiophene (2T), thieno[3,2‐b]‐thiophene (TT), dithieno[3,2‐b:2′,3′‐d]‐thiophene (DTT), and 5,5′′′‐di‐(2‐ethylhexyl)‐[2,3′;5′,2′′;4′′,2′′′]quaterthiophene (4T). The optical band gaps of the as‐prepared materials are smaller than 1.7 eV, which is attributed to the strong intramolecular charge transfer and the backbone coplanarity of the thiophene moieties. The order of both crystallinity and FET mobility (×10?2–×10?4 cm2 V?1 s?1) is TT2DPP > 4T2DPP > 2T2DPP >DTT2DP, which differ in the structure of the π‐conjugated cores and core symmetry. Well‐ordered intermolecular chain packing was confirmed by the GIXD and AFM results. In particular, the FET hole mobility of TT2DPP was further improved to 0.1 cm2 V?1 s?1, which was attributed to the well‐interconnected structure through solution‐shearing. These experimental results suggest the potential applications of the new DPP? thiophene? DPP conjugated materials for organic electronic devices.  相似文献   

18.
Diverse 4‐aryl‐2‐quinolinones are prepared from propionamides in one pot by ligand‐promoted triple sequential C H activation reactions and a stereospecific Heck reaction. In these cascade reactions, three new C C bonds and one C N bond are formed to rapidly build molecular complexity from propionic acid.  相似文献   

19.
2‐X‐1,3,2‐diazaarsolenes and 2‐X‐1,3,2‐ stibolenes (X = Cl, Br) were prepared from appropriate α‐amino‐aldimine precursors via transamination with ClSb(NMe2)2 or via base‐induced dehydrohalogenation with EX3 (E = As, Sb). The products were further converted into 2‐iodo‐derivatives via halide exchange with Me3SiI, or into 1,3,2‐diazaarsolenium or 1,3,2‐stibolenium salts via halide abstraction using E′X3 (E′ = Al, Ga, Sb) or Me3SiOTf. All compounds synthesized were characterized by spectroscopic data and several of them by single‐crystal X‐ray diffraction studies. The results of these investigations confirmed that diazaarsolenium or stibolenium cations are stabilized by similar π‐delocalization effects as the corresponding diazaphospholenium cations. 2‐Halogeno‐1,3,2‐diazaarsolenes and 2‐halogeno‐132‐stibolenes are best addressed as molecular species whose covalent E X bonds are as in 2‐chloro‐diazaphospholenes weakened by intramolecular π(C2N2) → σ*(E X) and, in the case of the Sb‐containing heterocycles, inter‐ molecular n(X′) → σ*(E X) hyperconjugation between the σ* (E X) orbital and a lone‐pair of electrons on the halogen atom of a neighboring molecule. Correlation of structural and spectroscopic data and the evaluation of halide transfer reactions allowed to conclude that the extent of E X bond weakening in the 2‐X‐substituted heterocycles decreases and thus the Lewis acidity of the cations increases, with increasing atomic number of the pnicogen atom. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:327–338, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20098  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号