首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


2.
3.
Tunable single‐molecule magnets : The spin‐level landscape in a series of FeIII4 single‐molecule magnets with propeller‐like structure was analyzed by means of high‐frequency EPR spectroscopy. The zero‐field splitting parameter D of the ground S=5 spin state correlates strongly with the pitch of the propeller γ (see picture), and thus provides a simple link between molecular structure and magnetic behavior.

  相似文献   


4.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

5.
A series of isostructural compounds with formula [M(TCNQF4)2(H2O)6]TCNQF4 ? 3 H2O (M=Tb ( 1 ), Y ( 2 ), Y:Tb (74:26) ( 3 ), and Y:Tb (97:3) ( 4 ); TCNQF4= tetrafluorotetracyanoquinodimethane) were prepared and their magnetic properties investigated. Compounds 1 , 3 , and 4 show the beginning of a frequency‐dependent out‐of‐phase ac signal, and decreasing intensity of the signal with decreased concentration of TbIII ions in the diluted samples is observed. No out‐of‐phase signal was observed for 2 , an indication that the behavior of 1 , 3 , and 4 is indicative of slow paramagnetic relaxation of TbIII ions in the samples. A more detailed micro‐SQUID study at low temperature revealed an interplay between single‐molecule magnetic (SMM) behavior and a phonon bottleneck (PB) effect, and that these properties depend on the concentration of diamagnetic yttrium ions. A combination of SMM and PB phenomena was found for 1 , whereby the PB effect increases with increasing dilution until eventually a pure PB effect is observed for 2 . The PB behavior is interpreted as being due to the presence of a “sea of organic S=1/2 radicals” from the TCNQF4 radicals in these compounds. The present data underscore the fact that the presence of an out‐of‐phase ac signal may not, in fact, be caused by SMM behavior, particularly when magnetic metal ions are combined with organic radical ligands such as those found in the organocyanide family.  相似文献   

6.
A series of homoleptic ([TbIII(Pc)2]) and heteroleptic ([TbIII(Pc)(Pc′)]) TbIII bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert‐butyl or tert‐butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron‐donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N? Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand‐field effect. In particular, heteroleptic [TbIII(Pc)(Pc′)] complex 4 , which contains one octa(tert‐butylphenoxy)‐substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single‐molecule magnet reported to date.  相似文献   

7.
Two new “butterfly‐shaped” pentanuclear dysprosium(III) clusters, [Dy53‐OH)3(opch)6(H2O)3] ? 3 MeOH ? 9 H2O ( 1 ) and [Dy53‐OH)3(Hopch)2(opch)4(MeOH)(H2O)2] ? (ClO4)2 ? 6 MeOH ? 4 H2O ( 2 ), which were based on the heterodonor‐chelating ligand o‐vanillin pyrazine acylhydrazone (H2opch), have been successfully synthesized by applying different reaction conditions. Single‐crystal X‐ray diffraction analysis revealed that the butterfly‐shaped cores in both compounds were comparable. However, their magnetic properties were drastically different. Indeed, compound 1 showed dual slow‐relaxation processes with a transition between them that corresponded to energy gaps (Δ) of 8.1 and 37.9 K and pre‐exponential factors (τ0) of 1.7×10?5 and 9.7×10?8 s for the low‐ and high‐temperature domains, respectively, whilst only a single relaxation process was noted for compound 2 (Δ=197 K, τ0=3.2×10?9 s). These significant disparities are most likely due to the versatile coordination of the H2opch ligands with particular keto–enol tautomerism, which alters the strength of the local crystal field and, hence, the nature or direction of the easy axes of anisotropic dysprosium ions.  相似文献   

8.
A POM to remember : Hexanuclear FeIII polyoxometalate (POM) single‐molecule magnets (see structure) can be noncovalently assembled on the surface of single‐wall carbon nanotubes. Complementary characterization techniques (see TEM image and magnetic hysteresis loops) demonstrate the integrity and bistability of the individual molecules, which could be used to construct single‐molecule memory devices.

  相似文献   


9.
10.
We have investigated the single‐molecule magnets [MnIII2(5‐Brsalen)2(MeOH)2MIII(CN)6]NEt4 (M=Os ( 1 ) and Ru ( 2 ); 5‐Brsalen=N,N′‐ethylenebis(5‐bromosalicylidene)iminate) by frequency‐domain Fourier‐transform terahertz electron paramagnetic resonance (THz‐EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three‐axis anisotropic magnetic exchange coupling between MnIII and RuIII or OsIII ions, respectively. Analysis by means of a spin‐Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2 , whereas a linear geometry would lead to an Ising‐type exchange coupling.  相似文献   

11.
Iron sandwich on a tungstate bun : Two new polyoxotungstates with paramagnetic iron(III) heteroatoms (see structure, W blue, Fe yellow, O red) possess S=15/2 and S=5 ground states. Both compounds are single‐molecule magnets, and the hexairon species shows large hysteresis (see picture) and quantum tunneling effects at low temperature. Electrochemical studies indicate that these species are stable in solution for a wide range of pH values.

  相似文献   


12.
13.
We report the synthesis of the novel heterometallic complex [Fe3Cr(L)2(dpm)6]?Et2O ( Fe3CrPh ) (Hdpm=dipivaloylmethane, H3L=2‐hydroxymethyl‐2‐phenylpropane‐1,3‐diol), obtained by replacing the central iron(III) atom by a chromium(III) ion in an Fe4 propeller‐like single‐molecule magnet (SMM). Structural and analytical data, high‐frequency EPR (HF‐EPR) and magnetic studies indicate that the compound is a solid solution of chromium‐centred Fe3Cr (S=6) and Fe4 (S=5) species in an 84:16 ratio. Although SMM behaviour is retained, the |D| parameter is considerably reduced as compared with the corresponding tetra‐iron(III) propeller (D=?0.179 vs. ?0.418 cm?1), and results in a lower energy barrier for magnetisation reversal (Ueff/kB=7.0 vs. 15.6 K). The origin of magnetic anisotropy in Fe3CrPh has been fully elucidated by preparing its Cr‐ and Fe‐doped Ga4 analogues, which contain chromium(III) in the central position (c) and iron(III) in two magnetically distinct peripheral sites (p1 and p2). According to HF‐EPR spectra, the Cr and Fe dopants have hard‐axis anisotropies with Dc=0.470(5) cm?1, Ec=0.029(1) cm?1, Dp1=0.710(5) cm?1, Ep1=0.077(3) cm?1, Dp2=0.602(5) cm?1, and Ep2=0.101(3) cm?1. Inspection of projection coefficients shows that contributions from dipolar interactions and from the central chromium(III) ion cancel out almost exactly. As a consequence, the easy‐axis anisotropy of Fe3CrPh is entirely due to the peripheral, hard‐axis‐type iron(III) ions, the anisotropy tensors of which are necessarily orthogonal to the threefold molecular axis. A similar contribution from peripheral ions is expected to rule the magnetic anisotropy in the tetra‐iron(III) complexes currently under investigation in the field of molecular spintronics.  相似文献   

14.
Given the recent advent of mononuclear single‐molecule magnets (SMMs), a rational approach based on lanthanides with axially elongated f‐electron charge cloud (prolate) has only recently received attention. We report herein a new SMM, [Li(THF)4[Er{N(SiMe3)2}3Cl]?2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization (ΔEeff/kB=63.3 K) and magnetic hysteresis up to 3 K at a magnetic field sweep rate of 34.6 Oe s?1. This work questions the theory that oblate or prolate lanthanides must be stabilized with the appropriate ligand framework in order for SMM behavior to be favored.  相似文献   

15.
Tetrairon(III) single‐molecule magnets [Fe4(pPy)2(dpm)6] ( 1 ) (H3pPy=2‐(hydroxymethyl)‐2‐(pyridin‐4‐yl)propane‐1,3‐diol, Hdpm=dipivaloylmethane) have been deliberately organized into supramolecular chains by reaction with RuIIRuII or RuIIRuIII paddlewheel complexes. The products [Fe4(pPy)2(dpm)6][Ru2(OAc)4](BF4)x with x=0 ( 2 a ) or x=1 ( 2 b ) differ in the electron count on the paramagnetic diruthenium bridges and display hysteresis loops of substantially different shape. Owing to their large easy‐plane anisotropy, the s=1 diruthenium(II,II) units in 2 a act as effective seff=0 spins and lead to negligible intrachain communication. By contrast, the mixed‐valent bridges (s=3/2, seff=1/2) in 2 b introduce a significant exchange bias, with concomitant enhancement of the remnant magnetization. Our results suggest the possibility to use electron transfer to tune intermolecular communication in redox‐responsive arrays of SMMs.  相似文献   

16.
17.
The selective replacement of the central iron(III) ion with vanadium(III) in a tetrairon(III) propeller‐shaped single‐molecule magnet has allowed us to increase the ground spin state from S=5 to S=13/2. As a consequence of the pronounced anisotropy of vanadium(III), the blocking temperature for the magnetization has doubled. Moreover, a significant remnant magnetization, practically absent in the parent homometallic molecule, has been achieved owing to the suppression of zero‐field tunneling of the magnetization for the half‐integer molecular spin. Interestingly, the contribution of vanadium(III) to the magnetic anisotropy barrier occurs through the anisotropic exchange interaction with iron(III) spins and not through single ion anisotropy as in most single‐molecule magnets.  相似文献   

18.
Lighting one by one: The electroluminescence (EL) from single molecules of a red phosphorescent iridium complex dispersed in a hole‐transporting polymer matrix is studied. The single‐molecule EL dynamics is determined by local structural inhomogeneities in the matrix polymer (see picture).

  相似文献   


19.
Efficient modulation of single‐molecule magnet (SMM) behavior was realized by deliberate structural modification of the Dy2 cores of [Dy2( a ′ povh )2(OAc)2(DMF)2] ( 1 ) and [Zn2Dy2( a′povh )2(OAc)6] ? 4 H2O ( 2 ; H2 a ′ povh =N′‐[amino(pyrimidin‐2‐yl)methylene]‐o‐vanilloyl hydrazine). Compound 1 having fourfold linkage between the two dysprosium ions shows high‐performance SMM behavior with a thermal energy barrier of 322.1 K, whereas only slow relaxation is observed for compound 2 with only twofold connection between the dysprosium ions. This remarkable discrepancy is mainly because of strong axiality in 1 due to one pronounced covalent bond, as revealed by experimental and theoretical investigations. The significant antiferromagnetic interaction derived from bis(μ2‐O) and two acetate bridging groups was found to be crucial in leading to a nonmagnetic ground state in 1 , by suppressing zero‐field quantum tunneling of magnetization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号