首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese-doped and undoped ZnO nanocrystals were synthesized via wet-chemical methods. The structure, physico-chemical, electrical and optical properties of the as-prepared products were characterized by using the X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS) and electrochemical impedance spectroscopy (EIS) techniques. The photocatalytic activity of Mn-doped ZnO nanocrystal (mixed phases) has been examined under the visible-irradiation by using photocatalytic oxidation of rhodamine B (RhB) dye as a model reaction, and compared with that of known system such as pure ZnO nanocrystal (single-phase). The results showed that Mn doped ZnO nanocrystals bleaches RhB much faster than undoped ZnO upon its exposure to the visible light. The enhancement of the photocatalytic activity was discussed as an effect due to the Mn doping in the Mn-doped ZnO semiconductors, which shifts the optical absorption edge to the visible region and alters the electron-hole pair separation conditions. These factors are responsible for the higher photocatalytic performance of Mn/ZnO composites.  相似文献   

2.
We report the synthesis and characterization of several sizes of Mn-doped ZnO nanocrystals, both in the free-standing and the capped particle forms. The sizes of these nanocrystals could be controlled by capping them with polyvinylpyrollidone under different synthesis conditions and were estimated by X-ray diffraction and transmission electron microscopy. The absorption properties of PVP-capped Mn-doped ZnO exhibit an interesting variation of the band gap with the concentration of Mn. Fluorescence emission, electron paramagnetic resonance, and X-ray absorption spectroscopy provide evidence for the presence of Mn in the interior as well as on the surface of the nanocrystals.  相似文献   

3.
The aim of this work is to investigate the efficacy of nebulizer sprayed ZnO–Co–F thin films for degrading the methylene blue (MB) aqueous solution under visible light irradiation. The physical properties of the prepared samples like structural, surface morphological and optical properties are studied using X-ray diffractometer (XRD), Scanning Electron Microscope (FESEM), UV-vis NIR spectrometer, spctroflurometer (PL) and Fourier Transform Infrared spectrometer (FTIR). The photocatalytic studies revealed that ZnO–Co–F film exhibited superior degradation efficiency over ZnO–Co and ZnO against MB as evinced by the degradation rate constants, 0.0782, 0.0475 and 0.0289 min–1, respectively. This study showed that Co + F doping helps to remove the major limitations of ZnO and thereby leads towards better visible light activity. The structural and optical studies revealed the proper incorporation of Co2+ and F ions into the ZnO lattice and the reduction in band gap. PL emission confirmed that Co + F doping reduces the electronhole recombination rate and increases the availability of free carriers.  相似文献   

4.
采用浸渍法制备了表面AgX(X=I,Br)等离子基元修饰的ZnO纳米柱状阵列,研究了浸渍浓度和时间以及紫外光光照预处理对ZnO纳米柱状阵列可见光光催化活性的影响.采用场发射扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱以及X射线光电子能谱仪等手段对ZnO纳米柱状阵列的形貌、相组成、禁带宽度及其表面特性进行了表征.结果显示,AgBr颗粒分布于ZnO纳米柱状阵列的顶端及顶端侧面,同时AgBr颗粒之间相互接触而形成网状结构.通过紫外光光照预处理,AgBr表面出现细小颗粒,形成Ag/AgBr/ZnO纳米复合结构.可见光光催化降解甲基橙结果表明,在相同工艺条件下所制AgBr/ZnO的可见光光催化活性明显优于AgI/ZnO,且与浸渍浓度及时间有关.由于ZnO纳米柱状阵列的比表面积大,AgBr的可见光响应特性以及Ag/AgBr纳米结构的表面等离子效应,经过紫外光光照预处理形成的Ag/AgBr/ZnO纳米复合结构表现出最好的可见光光催化活性.  相似文献   

5.
Hollow microblocks of [Zn(anic)_2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid(Hanic) and zinc(Ⅱ) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC_(12)H_(10)N_4O_4, was determined by Fourier transform infrared(FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N_2 adsorption-desorption analysis showed that the obtained ZnO microbricks possess a mesoporous structure with a surface area of 8.13 m~2/g and a pore size of 22.6 nm. The X-ray diffraction pattern of the final product proved the formation of a pure ZnO composition with a hexagonal structure. Moreover, FTIR analyses showed that the 2-aminonicotinic acid ligand peaks were absent after the calcination step. Diffuse reflectance spectroscopy was used to determine the band gap energy of the produced ZnO and it was about 3.19 eV. To investigate the photocatalytic activity of the porous ZnO nanostructure, a series of photocatalytic tests were carried out to remove Congo red, as a representative toxic azo dye, from aqueous solution. The results show that the product can be used as an efficient photocatalyst for waste water treatment with high degradation efficiency.  相似文献   

6.
The present work reports on the synthesis of ZnO photocatalysts with different Co-doping levels via a facile one-step solution route. The structural and optical properties were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and UV-Vis diffuse reflectance spectra. The morphology of Co-doped ZnO depends on the reaction temperature and the amount of Co and counter-ions in the solution. Changes with the c-axis lattice constant and room temperature redshift show the replacement of Zn with Co ions without changing the wurtzite structure. Photocatalytic activities of Co-doped ZnO on the evolution of H2 and the degradation of methylene blue (MB) reduce with the doping of Co ions. As the close ionic radii of Co and Zn, the reducing photocatalytic activity is not due to the physical defects but the formation of deep bandgap energy levels. Photocurrent response experiments further prove the formation of the recombination centers. Mechanistic insights into Co-ZnO formation and performance regulation are essential for their structural adaptation for application in catalysis, energy storage, etc.  相似文献   

7.

The malachite green (MG) is very difficult to degrade in water; thus, it needs an efficient photocatalyst. In this study, neem extract was used to tune the surface and crystal properties of ZnO nanostructures for the photodegradation of MG. The biosynthesized ZnO samples were prepared by hydrothermal method in the presence of 5, 10 and 15 mL of neem extract. The structural characterization has shown nanoparticle like morphology of ZnO as revealed by scanning electron microscopy (SEM) and hexagonal phase was confirmed by powder X-ray diffraction (XRD) technique. The XRD analysis has shown a shift in the 2 theta towards lower angle for ZnO with increasing amount of neem extract. Also, the crystallite particle size of ZnO was decreased with increasing neem extract. The UV–visible spectroscopy has shown the decrease in the optical band gap of ZnO, and the lowest band gap is possessed by ZnO sample produced with 15 mL of neem extract. The ZnO sample obtained with 15 mL of neem extract has shown approximately 99% degradation efficiency for MG for 70 min in aqueous solution. The superior photocatalytic activity of ZnO sample with 15 mL of neem extract could be attributed from the decrease in charge recombination rate due to the decreased optical band gap and particle size.

  相似文献   

8.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

9.
ZnO–SnO2 nanoparticles were prepared by coprecipitation method; then Mg, with different molar ratios and calcination temperatures, was loaded on the coupled nanoparticles by impregnation method. The synthesized nanoparticles were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) techniques. Based on XRD results, the ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles were made of ZnO and SnO2 nanocrystallites. According to DRS spectra, the band gap energy value of 3.13 and 3.18 eV were obtained for ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles, respectively. BET analysis revealed a Type III isotherm with a microporous structure and surface area of 32.051 and 49.065 m2 g?1 for ZnO–SnO2 and Mg/ZnO–SnO2, respectively. Also, the spherical shape of nanocrystallites was deduced from TEM and FESEM images. The photocatalytic performance of pure ZnO–SnO2 and Mg/ZnO–SnO2 was analyzed in the photocatalytic removal of methyl orange (MO). The results indicated that Mg/ZnO–SnO2 exhibited superior photocatalytic activity to bare ZnO–SnO2 photocatalyst due to high surface area, increased MO adsorption and larger band gap energy. Maximum photocatalytic activity of Mg/ZnO–SnO2 nanoparticles was obtained with 0.8 mol% Mg and calcination temperature of 350°C.  相似文献   

10.
为提高ZnO的光催化性和稳定性,扩展对光的吸收范围,以乙二胺四乙酸(H4EDTA)为配体形成配位前驱体,通过低温热分解配位前驱体法制备了Gd3+掺杂ZnO复合物Zn1-xGdxO2(x=0~0.1)纳米颗粒。 采用X射线粉末衍射(XRD)、红外光谱法(FT-IR)、扫描电子显微镜(SEM)、荧光光谱法(FL)、紫外可见漫反射光谱法(UV-Vis DRS)、交流阻抗(EIS)以及动态光电流响应(i-t)等多种手段研究掺杂比例对氧化锌物相、表面形貌、光学性以及光电响应性等的影响。 结果表明,Gd3+掺杂摩尔分数低于3%时,产物为单相纤锌矿ZnO,提高掺杂比例(>3%)不仅使ZnO晶格萎缩,同时还出现少量Gd2O3第二相,且晶粒随掺杂摩尔分数的增加而降低。 Gd3+掺杂使ZnO能带结构发生改变,其价带、导带和带隙等各值都随着掺杂摩尔分数的增加而降低。 I-t结果表明,适量掺杂可提高ZnO的光电响应能力,其中掺杂摩尔分数1%所得ZnO的光电流密度最大(10 mA/m2)。甲基橙(MO)的光降解结果显示,Gd3+掺杂能提高ZnO的催光化性,其中1%掺杂对ZnO的催化性提高最大。 最后还对ZnO的催化选择性和耐酸碱性进行了简单研究。  相似文献   

11.
Mn‐doped SrMoO4 nanocrystals were synthesized by thermal decomposition of metal–organic salt in an organic solvent with the doping content in the range 0–12 mol%. The structures, morphologies and optical properties were characterized using various techniques. The results suggest that Mo sites in the SrMoO4 lattice are substituted by the Mn dopant, the adsorption bands are found to be shifted toward the visible light region and the band gap becomes narrower correspondingly. The photocatalytic performance of the as‐synthesized product was determined using the degradation of methylene blue by visible light irradiation. The photocatalytic performance is enhanced with Mn doping, and the optimal degradation rate is 85% in 140 min for 5 mol% Mn doping. The enhanced photocatalytic activity with Mn doping may be ascribed to the energy band adjustment and effective photogenerated electron–hole separation caused by the Mn doping. A possible photocatalytic mechanism is also discussed.  相似文献   

12.
The electrical, optical and humidity sensor properties of nanostructured ZnO samples were investigated. The structural properties of Sn doped ZnO samples were characterized by X-ray diffraction and atomic force microscopy. It was found that the all samples have a hexagonal crystal structure. The electrical conductivity of the samples indicates that undoped and Sn doped ZnO samples exhibit the semiconducting behavior. The optical absorption method was used to determine the optical band gaps of the samples. The optical band gap and activation energy values of the ZnO samples were changed with Sn doping. The ZnO based on quartz crystal microbalance humidity sensors were prepared and sensing properties of the sensors were changed with Sn doping. The response time required to reach 70 % is about 13–16 s, while the recovery time from 70 to 30 % RH is about 13–15 s. The fast response of the sensors is due to easy diffusion of water molecules between ZnO nanopowders. The prepared sensors have a high reproducibility and sensitivity for humidity sensing applications.  相似文献   

13.
The nanometer potassium niobate powders with tungsten bronze (TB)-type structure were synthesized by a wet chemical method and characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). X-ray photoelectron spectroscopy (XPS) analysis confirmed the niobium with mixed valence states exists in the crystal structure of the photocatalyst, which may be advantage for increasing the photocatalytic activity. The band gap of K6Nb10.8O30 powders was estimated to be about 2.92 eV and shows a markedly blue-shift as compared to that of the sample obtained by the solid-state reaction. The photocatalytic activity of the samples was evaluated by degradation of acid red G under UV irradiation and the photocatalytic reaction follows first-order kinetics. The photocatalytic activity of the as-prepared sample is much higher than that of sample synthesized by solid-state reaction, and slightly higher than that of P25-TiO2.  相似文献   

14.
Pure and Mn-doped NaTaO3 nanoparticles were synthesized by a simple hydro- thermal method. XRD and XPS results suggested that manganese ions were successfully doped into the NaTaO3 crystalline in Mn2+ state. UV-vis diffuse reflectance spectra revealed the obvious red-shift in the series of manganese doped NaTaO3 nanoparticles, resulting in a decrease in the band gap of NaTaO3 with the increase of Mn2+ doping concentration. The photo-degradation experiment indicated that manganese doped NaTaO3 showed good photocatalytic performance and methylene blue(MB) degradation is improved with lower doping concentration of manganese ions under visible light. The simulation of energy band structure by density functional theory unfolded that the substitution of Ta5+ ions by Mn2+ ions resulted in an intermediate band(IB) below the bottom of the conduction band(CB), which was mainly attributed to the state of Mn 3d.  相似文献   

15.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   

16.
The toxic dye pigments, even in small quantities, can damage ecosystems. Removing organic, inorganic, and microbiological contaminants from wastewater via heterogeneous photocatalysis is a promising method. Herein, we report the band structure tuning of ZnO/CuO nanocomposites to enhance photocatalytic activity. The nanocomposites were synthesized by a chemical approach using step-wise implantation of p-type semiconductor CuO to n-type semiconductor ZnO. Various characterization techniques such as X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and UV spectroscopy were used to investigate the crystal structure, surface morphology, elemental composition and optical properties of the synthesized samples. As the CuO content increased from 10% to 50% in ZnO/CuO nanocomposites, the optical bandgap decreased from 3.36 to 2.14 eV. The photocatalytic activity of the samples was evaluated against the degradation of methylene blue (MB) under visible irradiation. Our study demonstrates a novel p–n junction oxide photocatalyst based on wt. 10% CuO/ZnO with superior photocatalytic activity. Effectively 66.6% increase in degradation rate was achieved for wt. 10% CuO/ZnO nanocomposite compared to pure ZnO nanoparticles.  相似文献   

17.
We investigated the structural, optical and magnetic properties of Mn-doped zinc oxysulfide films. Zn(O,S) films were deposited by a spray pyrolysis method on glass substrate. A thin Mn layer evaporated on these films served as the source for the diffusion doping. The XRD pattern of undoped films revealed the presence of two wurtzite phases corresponding to ZnS and ZnO with a strong preferred orientation along the ZnS (0 0 2) hexagonal plane direction. SEM showed a similar surface morphology for the undoped and Mn-doped films, displaying regular arrays of hexagonal micro-rods perpendicular to the substrate. The optical transmission measurements showed that both undoped and Mn diffusion-doped films had a low average transmittance less than about 10%. The gap energy is decreased from 3.42 to 3.33 eV upon annealing at 400 °C. Photoluminescence studies at 300 K show that the incorporation of manganese leads to a decrease of deep level band intensity compared to undoped sample. Clear ferromagnetic loops were observed for the Mn-doped Zn(O,S) films, which might be due to the presence of point defects.  相似文献   

18.
掺杂纳米TiO2光催化性能的研究   总被引:64,自引:2,他引:64  
利用浸渍法分别制备了Cr、Mn、Fe、Co、Ni、Cu六种过渡金属离子掺杂改性的二氧化钛光催化剂,以乙酸水溶液的光催化氧化反应和二氧化碳还原反应为探针,评价了掺杂催化剂的光催化性能.借助光电子能谱(XPS)、X射线衍射分析(XRD)等手段对掺杂催化剂进行了表征.研究结果表明,经过渡金属离子掺杂后,光催化性能均有不同程度的改善,改善程度按Cr、Co、Ni、Fe、Mn、Cu递增.掺杂后催化剂表面吸附氧的活泼性、金属离子的价态及得电子能力上的差异决定了不同离子掺杂纳米二氧化钛光催化性能的差异.  相似文献   

19.
In3+-doped BiVO4 nanoparticles with enhanced visible light activity have been successfully synthesized by a hydrothermal method. The synthesized materials were characterized by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, BET surface areas analysis, and ultraviolet–visible diffuse reflectance spectra. In comparison with pure BiVO4, the In3+-doped BiVO4 displayed greater photocatalytic activity in the degradation of methyl blue under visible light illumination. All samples possessed a single monoclinic structure. The introduction of In ions resulted in structural distortion and the decreased band gap energy, producing more electrons and holes for photocatalytic reaction. In the meantime, the doping In ions entails a red shift in the absorption edge and an increase in the intensity of light absorption. The best photocatalytic performance was obtained with the BiVO4 sample containing 5.0 mol% In ions.  相似文献   

20.
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m~2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号