首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubic Pd nanocrystals with shape‐controlled mesoporous silica shells have been theoretically designed and successfully synthesized for investigating the effect of a porous nanoshell on catalytic performance of the core. Cubic Pd@cubic mesoporous silica keeps activity of all facets and shows highest catalytic activity and enhanced reusability in the hydrogenation of nitrobenzene.  相似文献   

2.
To design electrocatalysts with excellent performance, morphology, composition and structure is a decisive influential factor. In this work, ultrasmall Ag@Pd core‐shell nanocrystals supported on Vulcan XC72R carbon with different Ag/Pd atomic ratios are synthesized via a facile successive reduction approach with formaldehyde and ethylene glycol as reducing agents, respectively. The Ag‐core/Pd‐shell nanostructures are revealed by high‐resolution transmission electron microscopy (HRTEM). Ag@Pd core‐shell nanocrystals possess a narrow size distribution with an average size of ca. 4.3 nm. In comparison to monometallic Pd/C and commercial Pd black catalysts, such Ag@Pd core‐shell nanocrystals display excellent electrocatalytic activities for formic acid oxidation, which may be due to high Pd utilization derived from the formation of Ag@Pd core‐shell nanostructure and the strong interaction between Ag and Pd.  相似文献   

3.
A novel Se/C nanocomposite with core‐shell structures has been prepared through a facile one‐pot microwave‐induced hydrothermal process. The new material consists of a trigonal‐Se (t‐Se) core and an amorphous‐C (a‐C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. These products were characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), energy‐dispersive X‐ray (EDX) spectroscopy, and X‐ray photoelectron spectroscopy (XPS).  相似文献   

4.
Pt‐based nanostructures serving as anode catalysts for the methanol oxidation reaction (MOR) have been widely studied for many years. Nevertheless, challenging issues such as poor reaction kinetics and the short‐term stability of the MOR are the main drawbacks of such catalysts and limit their applications. Herein, we have developed a facile approach to encapsulate Pt nanoparticles (NPs) inside the nanochannels of porous carbon nanotubes (CNTs; Pt‐in‐CNTs) as a new enhanced electrocatalytic material. The as‐prepared CNTs offer simultaneously ordered diffusion channels for ions and a confinement effect for the NPs, which both facilitate the promotion of catalytic kinetics and avoid the Ostwald ripening of Pt NPs, thus leading to high activity and durable cycle life as an anode catalyst for MOR. This work provides a new approach for enhancing the stability and activity by optimizing the structure of the catalyst, and the Pt‐in‐CNTs represent the most durable catalysts ever reported for MOR.  相似文献   

5.
TriPEGylated functionalized dendritic poly(ethylene imines) were synthesized and their transportation properties for rose Bengal (up to 50 guests per dendrimer) were evaluated. A critical aggregation concentration was observed, demonstrating the formation of aggregates among the dendrimers. The structure‐activity relationships show that their encapsulation capacities were dependent linearly on the density of the PEG shell, either as PEG length or degree of functionality, which confirmed that the PEG chains play a predominant role in the encapsulation process. It further gives some insights that the guest molecules appeared to be predominantly located in the PEG shell rather than in the core.

  相似文献   


6.
Multiwalled carbon nanotube (MWCNT)‐coated polystyrene (PS) beads have been prepared by dispersion polymerization followed by a layer‐by‐layer self‐assembly method. The concentration of carboxylic acid groups on the MWCNTs increased from 1.81 × 1021 to 3.43 × 1022 COO per g as the treatment time was increased from 3 to 9 h. The sulfonated polystyrene (SPS) beads changed from being negatively charged to positively charged when the cationic polyelectrolyte was self‐assembled on their surface. The surface morphology of the adsorbed polyelectrolyte was smooth without any aggregation and the thickness of the polyelectrolyte coating on the SPS beads was ≈0.6 µm. The electrical conductivity and resistance of the MWCNT‐coated SPS beads were measured to be 4.0 × 10−2 S · cm−1 and 12.8 Ω at a volume fraction of 91%, respectively.

  相似文献   


7.
Summary: The D ‐glucose imprinted core‐shell nanosphere with an average size of ≈60 to 80 nm showed a significant preference for the binding of D ‐glucose than the non‐imprinted core‐shell nanosphere. Depending on temperature, the binding site in the shell with N‐isopropylacrylamide oligomer underwent a significant change in binding affinity. In addition, the D ‐glucose imprinted core‐shell nanosphere showed a two times higher affinity for D ‐glucose than L ‐glucose, suggesting chiral recognition of the binding site. The core‐shell nanosphere reported here is a good biomimetic model system with a well‐defined morphology, high surface area, and variable binding affinity through a change in temperature.

D ‐glucose imprinted core‐shell nanospheres showed excellent binding over the non‐imprinted core‐shell nanosphere.  相似文献   


8.
Pd@Pt core‐shell nanocrystals consisting of well‐defined Pd nanocube cores and dendritic Pt shells were prepared by a new facile aqueous one‐pot synthetic method. The prepared Pd@Pt nanocrystals exhibited efficient catalytic activity and stability toward methanol electrooxidation, and their catalytic function was highly dependent on their Pt shell thickness due to the different synergism between Pt and Pd.  相似文献   

9.
Coming to the surface : The surface composition of carbon‐supported Pt3Co catalyst particles changes upon a CO‐annealing treatment. Platinum atoms segregate to the particle surface so that nanoparticles with a platinum shell surrounding an alloy core are formed. This modified catalyst has a superior activity in the oxygen reduction reaction compared to both a plain platinum catalyst and the untreated alloy particles.

  相似文献   


10.
《Electroanalysis》2018,30(8):1604-1609
A novel approach to high loaded Pt core/carbon shell catalyst synthesis from a Pt‐aniline complex was reported. The Pt‐aniline complex was successfully synthesized by irradiating an ultrasound to the hexachloro platinic acid and aniline monomer mixture. The highly viscous nature of aniline leads to reproducible hexagonal plate like Pt‐aniline complex crystals. The chemical composition of the Pt‐aniline complex was identified as [PtCl2(C6H5NH2)2] with the help of NMR, XPS, HR ESI‐MS, and TGA analyses. Furthermore, the Pt‐aniline hexagonal plates were sintered at various temperatures like 400 °C, 500 °C, and 700 °C for an hour. This formed the highly dispersed carbon covered Pt nano particles with loading of 80.1 wt %, 81.3 wt %, and 83.4 wt % for HP‐4, HP‐5, and HP‐7, respectively. After supporting it on Vulcan XC‐72, Pt core/carbon shell pyrolyzed at a low temperature showed excellent performance in methanol oxidation reaction. In addition, Pt core/carbon shell prepared at a high temperature revealed excellent tolerance to methanol.  相似文献   

11.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


12.
13.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

14.
Core–shell hierarchical porous carbon spheres (HPCs) were synthesized by a facile hydrothermal method and used as host to incorporate sulfur. The microstructure, morphology, and specific surface areas of the resultant samples have been systematically characterized. The results indicate that most of sulfur is well dispersed over the core area of HPCs after the impregnation of sulfur. Meanwhile, the shell of HPCs with void pores is serving as a retard against the dissolution of lithium polysulfides. This structure can enhance the transport of electron and lithium ions as well as alleviate the stress caused by volume change during the charge–discharge process. The as‐prepared HPC‐sulfur (HPC‐S) composite with 65.3 wt % sulfur delivers a high specific capacity of 1397.9 mA h g?1 at a current density of 335 mA g?1 (0.2 C) as a cathode material for lithium–sulfur (Li‐S) batteries, and the discharge capacity of the electrode could still reach 753.2 mA h g?1 at 6700 mA g?1 (4 C). Moreover, the composite electrode exhibited an excellent cycling capacity of 830.5 mA h g?1 after 200 cycles.  相似文献   

15.
A novel and facile bottom‐up strategy for preparing core‐shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline‐coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di‐block copolymer of poly (p‐dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py‐PPDO‐b‐PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self‐assembly of Py‐PPDO‐b‐PEG and MWCNTs is co‐induced by the crystallization of PPDO blocks and the π–π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with “shish kebab”‐like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py‐PPDO‐b‐PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region.

  相似文献   


16.
We report a first solution strategy for controlled synthesis of Adams’ catalyst (i.e., α‐PtO2) by a facile and totally green approach using H2PtCl6 and water as reactants. The prepared α‐PtO2 nanocrystals (NCs) are ultrasmall in size and have very “clean” surfaces, which can be reduced to Pt NCs easily in ethanol under ambient conditions. Such Adams’ catalysts have been applied as electrocatalysts beyond the field of heterogeneous catalysis. Noticeably, the water‐only synthesized α‐PtO2 NCs and their derivative Pt NCs all exhibit much higher oxygen reduction reaction (ORR) activities and stabilities than that of the state‐of‐art Pt/C electrocatalysts. This study provides an example on the organics‐free synthesis of α‐PtO2 and Pt NCs as promising cathode catalysts for fuel cell applications and, particularly, this simple, straightforward method may open a new way for the synthesis of other “clean” functional nanomaterials.  相似文献   

17.
Summary: A new method has been developed to prepare smart polymeric microgels that consist of well‐defined temperature‐sensitive cores with pH‐sensitive shells. The microgels were obtained directly from aqueous graft copolymerizations of N‐isopropylacrylamide and N,N‐methylenebisacrylamide from water‐soluble polymers containing amino groups such as poly(ethyleneimine) and chitosan. The gel diameters ranged from 300 to 400 nm. The unique core‐shell nanostructures, which had narrow size distributions, exhibited tuneable responses to pH and temperature.

Transmission electron micrograph of the poly(N‐isopropylacrylamide)/chitosan core‐shell microgels.  相似文献   


18.
Surface initiated living‐radical polymerization (SIP) based on dithiocarbamate iniferters has been used to create molecularly imprinted core‐shell (CS) nanoparticles. Using this approach, propranolol, morphine and naproxen have been successfully imprinted in particle shells (the latter could not be imprinted using conventional aqueous‐based CS methods). Rebinding properties of the imprinted particles appear to be similar to those made by alternative methods. The living radical initiation mechanism makes it possible to build complex multi‐layer particles sequentially. As a demonstration, multi‐layer propranolol‐imprinted particles were generated. Two additional functional shells were grown over the imprinted shell, while the propranolol binding was retained, albeit at a reduced level.

  相似文献   


19.
In this work, Ni@Pt core‐shell nanoparticles with diameter of 3–4 nm and thin Pt shell was synthesized by a successive reduction approach using carbon as support to develop high‐performance non‐enzymatic glucose sensor. The resulting electrochemical sensor displayed good catalytic activity toward glucose oxidation, presenting a high current density of 66.9 µA mM?1 cm?2 at an applied potential of ?0.1 V. It showed a wide linear range of 0.1–30.1 mM and the limit of detection was down to 30 µM (S/N=3). Notably, it was found that the proposed sensor exhibited good selectivity to avoid the interference from ascorbic acid, uric acid, fructose and acetamidophenol. Furthermore, the feasibility of the as‐prepared non‐enzymatic glucose sensor in the determination of glucose in serum samples was successfully implemented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号