首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Four new diketopiperazine alkaloids, rel‐(8R)‐9‐hydroxy‐8‐methoxy‐18‐epi‐fumitremorgin C ( 1 ), rel‐(8S)‐19,20‐dihydro‐9,20‐dihydroxy‐8‐methoxy‐9,18‐di‐epi‐fumitremorgin C ( 2 ), rel‐(8S,19S)‐19,20‐dihydro‐9,19,20‐trihydroxy‐8‐methoxy‐9‐epi‐fumitremorgin C ( 3 ), and (3S,8S,9S,18S)‐8,9‐dihydroxyspirotryprostatin A ( 4 ), together with the eight known compounds 5 – 12 , were isolated from the endophytic fungus Aspergillus fumigatus. The structures of the new compounds were determined by extensive spectroscopic methods including HR‐ESI‐MS, NMR, and CD experiments. Compound 12 showed weak inhibitory activity in vitro against the release of β‐glucuronidase in rat polymorphonuclear leukocytes induced by the platelet‐activating factor. None of the twelve compounds exhibited detectable cytotoxic activities toward five human tumor cell lines (HCT‐8, Bel‐7402, BGC‐823, A549, and A2780) in the MTT assay.  相似文献   

2.
An asymmetric synthesis of (4R,8R)‐4,8‐dimethyldecanal, the most active component of natural tribolure, was achieved through an asymmetric methylation as a key step and chiral‐pool strategy. Natural tribolure is a mixture of four stereoisomers, (4R,8R)/(4R,8S)/(4S,8R)/(4S,8S), and their ratio is 4/4/1/1. However, the (4R,8R)‐isomer is the most active one. Based on a chiral‐pool strategy, we used a recycled chiral molecular (R)‐4‐(Benzyloxy)‐3‐methylbutanal that we exploited in our previous article. After executing a C5 + C5 + C2 synthetic plan, the target molecule was obtained in nine linear steps and in 36.8% overall yield.  相似文献   

3.
Two new iridoids, methyl (+)‐rel‐(1R,3S,4R,5R,8R,9R)‐1,3,4,5,8,9‐hexahydro‐8‐hydroxy‐3‐methoxy‐2H‐1a,2‐dioxacyclopent[cd]indene‐4‐carboxylate ( 1 ) and methyl (+)‐rel‐(1R,3S,4S,5R,8R,9R)‐1,3,4,5,8,9‐hexahydro‐8‐hydroxy‐3‐methoxy‐2H‐1a,2‐dioxacyclopent[cd]indene‐4‐carboxylate ( 2 ), were isolated from Viburnum cylindricum along with 14 known compounds. Their structures were determined by spectroscopic analyses. This type of iridoids bearing a MeO group at C(3) was discovered for the first time.  相似文献   

4.
Six new lanostane triterpenes, artabotryols A, B, C1, C2, D, and E ( 1, 2, 3a, 3b, 4 , and 5 , resp.) have been isolated from the seeds of Artabotrys odoratissimus (Annonaceae). Their structures have been established as (3α,22S,25R)‐3‐hydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 1 ), (3α,22S,25R)‐22,26‐epoxylanost‐8‐ene‐3,26‐diol ( 2 ), (3α,22S,25R,26R)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3a ), (3α,22S,25R, 26S)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3b ), (3α,22S,25R)‐3,22‐dihydroxylanost‐8‐en‐26‐oic acid ( 4 ) and (3α,7α,11α,22S,25R)‐3,7,11‐trihydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 5 ) by spectroscopic studies and chemical correlations.  相似文献   

5.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

6.
From the stems of Schisandra rubriflora, two novel partially saturated dibenzocyclooctene lignans, named rubriflorin A ( 1 ) and B ( 6 ), as well as the seven known partially saturated dibenzocyclooctene lignans kadsumarin A ( 2 ), kadsurin ( 3 ), heteroclitin B ( 4 ), heteroclitin C ( 5 ), heteroclitin D ( 7 ), interiorin ( 8 ), and interiorin B ( 9 ) were isolated. The structures of the new compounds 1 and 6 were established on the basis of spectral analysis as (5R,6S,7R,8R,13aS)‐8‐(acetyloxy)‐5,6,7,8‐tetrahydro‐1,2,3,13‐tetramethoxy‐6,7‐dimethylbenz([3,4]cycloocta[1,2‐f][1,3]benzodioxol‐5‐yl (2Z)‐2‐methylbut‐2‐enoate and (6R,7R,12aS)‐7,8‐dihydro‐12‐hydroxy‐1,2,3,10,11‐pentamethoxy‐6,7‐dimethyl‐6H‐dibenzo[a,c]cycloocten‐5‐one, respectively.  相似文献   

7.
Two trans stereoisomers of 3‐methylcyclopentadecanol (=muscol), (1R,3R)‐ 2 and (1S,3S)‐ 2 , were efficiently synthesized from (3RS)‐3‐methylcyclopentadecanone (=muscone; (3RS)‐ 1 ) by a highly stereoselective reduction (Scheme). L‐Selectride® (=lithium tri(sec‐butyl)borohydride) was used, followed by the enantiomer resolution by lipase QLG (Alcaligenes sp.). The cis stereoisomers of muscol, (1S,3R)‐ 2 and (1R,3S)‐ 2 , were obtained by the Mitsunobu inversion of (1R,3R)‐ 2 and (1S,3S)‐ 2 , respectively (Scheme). The absolute configuration of (1R,3R)‐ 2 was determined by X‐ray crystal‐structure analysis of its 3‐nitrophthalic acid monoester, 2‐[(1R,3R)‐3‐methylcyclopentadecyl hydrogen benzene‐1,2‐dicarboxylate ((1R,3R)‐ 3b ), and by oxidation of (1R,3R)‐ 2 to (3R)‐muscone.  相似文献   

8.
Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels–Alder reaction between furan‐2(5H)‐one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4R,7S,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 2 ) and (3aS,4S,7R,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4R,7S,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 3 ). The endo adduct ( 2 ) was brominated to afford (3aR,4R,5R,7R,7aS,8R)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4S,5S,7S,7aR,8S)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 4 ) and (3aS,4R,5R,6S,7S,7aR)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4S,5S,6R,7R,7aS)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 5 ). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non‐classical assay structures with the aid of computational calculations. Computation to predict the 13C and 1H chemical shifts for mean absolute error analyses have been carried out by gauge‐including atomic orbital method at M06‐2X/6‐31+G(d,p) and B3LYP/6‐311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds ( 4 ) and ( 5 ) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical 1H and 13C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Two new citrinin dimers, penidicitrinin A ((2R,3S,5aS,9R,10S,12aR,12bR)‐2,3,5a,6,9,10,12a,12b‐octahydro‐7,12a‐dihydroxy‐12b‐methoxy‐2,3,4,9,10,11‐hexamethyl‐5H‐difuro[2,3‐b : 2′,3′‐h]xanthen‐5‐one; 1 ) and penidicitrinin B ((1S,3R,4S)‐1‐{2,6‐dihydroxy‐4‐[(1S,2R)‐2‐hydroxy‐1‐methylpropyl]‐3‐methylphenyl}‐3,4‐dihydro‐3,4,5‐trimethyl‐1H‐2‐benzopyran‐6,8‐diol; 2 ), together with three known citrinin monomers were isolated from a volcano ash‐derived fungus, Penicillium citrinum HGY1‐5. Their structures were established by spectroscopic methods, and they showed no cytotoxicity against two tumor cell lines.  相似文献   

10.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

11.
Previous activity‐guided phytochemical studies on Garcinia buchananii stem bark, which is traditionally used in Africa to treat various gastrointestinal and metabolic illnesses, revealed xanthones, polyisoprenylated benzophenones, flavanone‐C‐glycosides, biflavonoids, and/or biflavanones as bioactive key molecules. Unequivocal structure elucidation of biflavonoids and biflavanones by means of NMR spectroscopy is often complicated by the hindered rotation of the monomers around the C‐C axis (atropisomerism), resulting in a high spectral complexity. In order to facilitate an unrestricted rotation, NMR spectra are usually recorded at elevated temperatures, commonly over 80 °C, which effects in a single set of resonance signals. However, under these conditions, one of the target compounds of this investigation, (2R,3S,2″R,3″R)‐manniflavanone ( 1 ), undergoes degradation. Therefore, we demonstrated in the present study that the 1,1‐ADEQUATE could be successfully used as a powerful alternative approach to confirm the C‐C connectivities in 1 , avoiding detrimental conditions. However, a moderate increase in temperature up to 50 °C was sufficient to deliver sharp signals in the proton NMR experiment of (2R,3S,2″R,3″R)‐isomanniflavanone ( 2 ) and (2″R,3″R)‐preussianone ( 3 ). In addition, two new compounds could be isolated, namely (2R,3S,2″R,3″R)‐GB‐2 7″‐O‐β‐d ‐glucopyranoside ( 4 ) and (2R,3S,2″R,3″R)‐manniflavanone‐7″‐O‐β‐d ‐glucopyranoside ( 5 ), and whose structures were elucidated by spectroscopic analysis including 1D and 2D NMR and mass spectrometry methods. The absolute configurations were determined by a combination of NMR and electronic circular dichroism (ECD) spectroscopy. The aforementioned compounds exhibited high anti‐oxidative capacity in the H2O2 scavenging, hydrophilic Trolox equivalent antioxidant capacity (H‐TEAC) and hydrophilic oxygen radical absorbance capacity (H‐ORAC) assays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Three new lanostane‐type triterpenoids, inonotsulides A, B, and C ( 1 – 3 , resp.) were isolated from the sclerotia of Inonotus obliquus (Pers .: Fr.) (Japanese name: Kabanoanatake; Russian name: Chaga). Their structures were determined to be (20R,24S)‐3β,25‐dihydroxylanost‐8‐en‐20,24‐olide ( 1 ), (20R,24R)‐3β,25‐dihydroxylanost‐8‐en‐20,24‐olide ( 2 ), and (20R,24S)‐3β,25‐dihydroxylanosta‐7,9(11)‐dien‐20,24‐olide ( 3 ) on the basis of chemical transformation, NMR spectroscopy including 1D and 2D (1H,1H‐COSY, NOESY, HMQC, HMBC), EI‐MS, and single‐crystal X‐ray analysis.  相似文献   

13.
As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β‐agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)‐6‐acetoxy‐4,9‐dihydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O11, ( II ), (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O10, ( III ), and (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐10‐(benzoyloxy)‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepin‐5‐yl furan‐3‐carboxylate, C29H34O9, ( IV ), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C 73 , 451–457]. In the (isomorphic) structures of ( II ) and ( III ), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in ( II ) and no substituent in ( III ). This position is also unsubstituted in ( IV ), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in ( II ) and 1S,4S,5S,6R,7R,9S,10S in ( III ) and ( IV ), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in ( II ) and H in ( III ) and ( IV ). This diversity in substitution, in turn, is responsible for the differences in the hydrogen‐bonding schemes, which is discussed.  相似文献   

14.
Two new highly oxidized humulane sesquiterpenes, mitissimols F ( 1 ) and G ( 2 ), were isolated from the fruiting bodies of Lactarius mitissimus. Their structures were elucidated by using extensive spectroscopic techniques including 1D‐ and 2D‐NMR experiments. The absolute configuration of mitissimol F ( 1 ) was determined by 1H‐NMR resolution of its diastereoisomeric α‐methoxy‐α‐(trifluoromethyl)benzeneacetates (MTPA). It was shown to be (1S,3E,6S,8R,9R,10S,11R)‐8,9 : 10,11‐diepoxy‐1,6‐dihydroxyhumul‐3‐en‐5‐one (=(1S,2R,4R,6S,8E,11S,12R)‐6,11‐dihydroxy‐1,6,10,10‐tetramethyl‐3,13‐dioxatricyclo[10.1.0.02,4]tridec‐8‐en‐7‐one).  相似文献   

15.
Three new lanostane‐type triterpenoids, inonotsutriols A ( 1 ), B ( 2 ), and C ( 3 ) were isolated from the sclerotia of Inonotus obliquus (Pers .: Fr.) (Japanese name: kabanoanatake; Russian name: chaga). Their structures were determined to be (3β,21R,24S)‐21,24‐cyclolanost‐8‐ene‐3,21,25‐triol ( 1 ), (3β,21R,24R)‐21,24‐cyclolanost‐8‐ene‐3,21,25‐triol ( 2 ), and (3β,21R,24S)‐21,24‐cyclolanosta‐7,9(11)‐diene‐3,21,25‐triol ( 3 ) on the basis of NMR spectroscopy including 1D and 2D experiments (1H,1H‐COSY, NOESY, HMQC, and HMBC) and EI‐MS.  相似文献   

16.
The absolute configuration of decipinone ( 2 ), a myrsinane‐type diterpene ester previously isolated from Euphorbia decipiens, has been determined by NMR study of its axially chiral derivatives (aR)‐ and (aS)‐N‐hydroxy‐2′‐methoxy‐1,1′‐binaphthalene‐2‐carboximidoyl chloride ((aR)‐MBCC ( 3a ) and (aS)‐MBCC ( 3b )). The absolute configurations at C(7) and C(13) of 2 determined were (R) and (S), respectively. Therefore, considering the relative configuration of 2 , the absolute configuration determined was (2S,3S,4R,5R,6R,7R,11S,12R,13S,15R).  相似文献   

17.
The reactions of 4,4′‐dimethoxythiobenzophenone ( 1 ) with (S)‐2‐methyloxirane ((S)‐ 2 ) and (R)‐2‐phenyloxirane ((R)‐ 6 ) in the presence of a Lewis acid such as BF3?Et2O, ZnCl2, or SiO2 in dry CH2Cl2 led to the corresponding 1 : 1 adducts, i.e., 1,3‐oxathiolanes (S)‐ 3 with Me at C(5), and (S)‐ 7 and (R)‐ 8 with Ph at C(4) and C(5), respectively. A 1 : 2 adduct, 1,3,6‐dioxathiocane (4S,8S)‐ 4 and 1,3‐dioxolane (S)‐ 9 , respectively, were formed as minor products (Schemes 3 and 5, Tables 1 and 2). Treatment of the 1 : 1 adduct (S)‐ 3 with (S)‐ 2 and BF3?Et2O gave the 1 : 2 adduct (4S,8S)‐ 4 (Scheme 4). In the case of the enolized thioketone 1,3‐diphenylprop‐1‐ene‐2‐thiol ( 10 ) with (S)‐ 2 and (R)‐ 6 in the presence of SiO2, the enesulfanyl alcohols (1′Z,2S)‐ 11 and (1′E,2S)‐ 11 , and (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 , respectively, as well as a 1,3‐oxathiolane (S)‐ 14 were formed (Schemes 6 and 8). In the presence of HCl, the enesulfanyl alcohols (1′Z,2S)‐ 11 , (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 cyclize to give the corresponding 1,3‐oxathiolanes (S)‐ 12 , (S)‐ 14 , and (R)‐ 16 , respectively (Schemes 7, 9, and 10). The structures of (1′E,2S)‐ 11 , (S)‐ 12 , and (S)‐ 14 were confirmed by X‐ray crystallography (Figs. 13). These results show that 1,3‐oxathiolanes can be prepared directly via the Lewis acid‐catalyzed reactions of oxiranes with non‐enolizable thioketones, and also in two steps with enolized thioketones. The nucleophilic attack of the thiocarbonyl or enesulfanyl S‐atom at the Lewis acid‐complexed oxirane ring proceeds with high regio‐ and stereoselectivity via an Sn 2‐type mechanism.  相似文献   

18.
Four new cerebrosides, gynuramides I?IV ( 1 ‐ 4 ), together with 37 known compounds were isolated from the rhizome of Gynura japonica. The structures of cerebrosides 1 ‐ 4 were determined by chemical and spectroscopic examination to be: (2S,3S,4R,8E)‐2‐[(R)‐2‐hydroxypentacosanoylamino]‐8‐en‐1,3,4‐octadecanetriol, (2S,3S,4R,8E)‐2‐[(R)‐2‐hydroxytetracosanoylamino]‐8‐en‐1,3,4‐octadecanetriol, (2S,3S,4R,8E)‐2‐[(R)‐2‐hydroxytricosanoylamino]‐8‐en‐1,3,4‐octadecanetriol, and (2S,3S,4R,8E)‐2‐[(R)‐2‐hydroxydocosanoylamino]‐8‐en‐1,3,4‐octadecanetriol.  相似文献   

19.
Three new compounds (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,10E)‐1,3,4‐trihydroxyicos‐10‐en‐2‐yl]docosanamide ( 1 ), (2R,3R)‐2,3‐dihydroxy‐N‐[(2S,3S,4R,10E)‐1,3,4‐trihydroxyicos‐10‐en‐2‐yl]docosanamide ( 2 ), N‐(2‐phenylethyl)tetracosanamide ( 3 ), together with a known ceramide, (2R)‐N‐[(2S,3S,4R,8E)‐1‐(β‐D ‐Glucopyranosyloxy)‐3,4‐dihydroxyoctadec‐8‐en‐2‐yl]‐2‐hydroxyhexadecanamide ( 4 ), were isolated from acetone extract of flower disc of Helianthus annuus L. The structures were identified on the basis of chemical and spectroscopic methods.  相似文献   

20.
Two new dolabellane diterpenoids, (1R,3R,7E,11S,12R)‐dolabella‐4(16),7‐diene‐3,18‐diol ( 1 ) and (1R,3E,7R,11S,12R)‐dolabella‐3,8(17)‐diene‐7,18‐diol ( 2 ), and the known (1R,3E,7E,11S,12R)‐dolabella‐3,7‐dien‐18‐ol ( 3 ) were isolated from Aglaia odorata, along with twelve other known compounds. Their structures were elucidated on the basis of spectroscopic data. This is the first time that dolabellane‐type diterpenoids were detected in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号