首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New hybrid porphyrin tapes comprising meso‐3,5‐di‐tert‐butylphenyl‐substituted ZnII‐porphyrins ( D ) and meso‐pentafluorophenyl‐substituted ZnII‐porphyrins ( A ) were synthesized via cross‐condensation of meso‐formyl porphyrins 1 , 5 , and 9 with oligopyrromethanes 2 and 6 as key steps. These hybrid tapes exhibit improved solubilities and enhanced chemical stability as compared with original Dn porphyrin tapes, and all display remarkably coplanar structures favorable for π‐conjugation. The absorption spectrum of ADDA displays Q‐like bands at 1400 and 1657 nm with a vibronic structure characteristic of porphyrinoids. The cyclic voltammograms exhibited positively shifted oxidation and reduction waves in the order of DDD < DAD < ADA < AAA . Tetrameric tape ADDA displays five reversible waves in a narrow range of 1.13 V. Two‐photon absorption (TPA) measurement confirmed that the π‐conjugation path is extended from 12 to ADDA and the molecular polarizability of ADA is larger than that of AAA .  相似文献   

2.
Zirconocene is the key : A new synthetic method, which utilizes zirconocene‐mediated coupling of alkynes, has been developed for the preparation of a new class of highly Lewis acidic boroles (see scheme). Such compounds hold potential for applications in catalysis and the field of electron‐deficient organic materials.

  相似文献   


3.
A new ladder‐conjugated star‐shaped oligomer electron‐transporting material TetraPDI‐PF , with four perylene diimide (PDI) branches and a fluorene core, was efficiently synthesized. The oligomer is highly soluble in dichlorobenzene with a solubility of 155 mg mL?1, which is higher than those of PDI (35 mg mL?1) and PDI‐Phen (70 mg mL?1). Demonstrated by thermogravimetric analysis (TGA), the oligomer exhibits excellent thermal stability with the decomposition temperature (Td) of 291.2 °C, which is 65 °C higher than that of PDI. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to investigate the electrochemical properties. Although the CV curves of TetraPDI‐PF are successively scanned for 15 cycles, they still remain invariable reduction potentials. The oligomer also shows outstanding photostability, even better than PDI, which maintains 99 % fluorescence intensity after irradiation for 10 min using maximum laser intensity. In the steady‐state space‐charge‐limited current (SCLC) devices, TetraPDI‐PF exhibits higher intrinsic electron mobility of 2.22×10?5 cm2 V?1 s?1, three orders of magnitude over that of PDI (3.52×10?8 cm2 V?1 s?1). The bulk heterojunction (BHJ) organic solar cells (OSCs) using TetraPDI‐PF as non‐fullerene acceptors and P3HT as donors give optimum power conversion efficiency (PCE) of 0.64 %, which is 64 times that of the PDI:P3HT BHJ cells.  相似文献   

4.
5.
6.
Porphyrins have been investigated for a long time in various fields of chemistry owing to their excellent redox and optical properties. Structural isomers of porphyrins have been synthesized, namely, porphycene, hemiporphycene, and corrphycene. Although the number of studies on these structural isomers is limited, they exhibit interesting properties suitable for various applications such as photovoltaic devices, photocatalysts, and photodynamic therapy. In the present review, we summarized their photoinduced electron‐transfer processes, which are key steps of various photofunctions. Their electrochemical and photophysical properties are summarized as basic properties for the electron transfer. Furthermore, differences among these isomers in the electron‐transfer processes are clarified, and its origin has been discussed on the basis of their molecular structures.  相似文献   

7.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

8.
Summary: A new class of poly(arylene ethynylene)s (PAEs) containing an electron‐deficient N‐alkylphthalimide unit was prepared by means of a Sonogashira reaction. Complete solubility of the PAEs was observed by utilizing a 2,6‐diisopropylphenyl side chain. The chemical structure of the novel soluble polymer 3c was confirmed by NMR spectra, whereas the insoluble polymers were characterized by elemental analysis and IR spectra. Fluorescence measurements of 3c indicate a rigid structure and high symmetry in the excited state.

  相似文献   


9.
The complexation of two equivalents of a cyclic (alkyl)(amino)carbene (CAAC) to tetrabromodiborane, followed by reduction with four equivalents of sodium naphthalide, led to the formation of the CAAC‐stabilized linear diboracumulene (CAAC)2B2. The capacity of the CAAC ligand to facilitate B2→CAAC donation of π‐electron density resulted in important differences between this species and a previously reported complex featuring a B?B triple bond stabilized by cyclic di(amino)carbenes, including a longer B? B bond and shorter B? C bonds. Frontier orbital analysis indicated sharing of valence electrons across the entire linear C‐B‐B‐C unit in (CAAC)2B2, which is supported by natural population analysis and cyclic voltammetry.  相似文献   

10.
Introduced herein is a series of conjugated thienylboranes, which are inert to air and moisture, and even resist acids and strong bases. X‐ray analyses reveal a coplanar arrangement of the thiophene rings, an arrangement which facilitates p–π conjugation through the boron atoms despite the presence of highly bulky 2,4,6‐tri‐tert‐butylphenyl (Mes*) or 2,4,6‐tris(trifluoromethyl)phenyl (FMes) groups. Short B???F contacts, which lead to a pseudotrigonal bipyramidal geometry in the FMes species, have been further studied by DFT and AIM analysis. In contrast to the Mes* groups, the highly electron‐withdrawing FMes groups do not diminish the Lewis acidity of boron toward F? anions. These compounds can be lithiated or iodinated under electrophilic conditions without decomposition, thus offering a promising route to larger conjugated structures with electron‐acceptor character.  相似文献   

11.
Directly meso‐meso, ββ, ββ triply linked porphyrin arrays are exceptional π‐conjugated molecules exhibiting remarkably red‐shifted absorption bands extending deeply in the IR region. In order to determine the effective conjugated length (ECL), we embarked on the synthesis of the porphyrin tapes far beyond the 12‐mer, which is the longest we have prepared so far. In this study, to find the compromise between the feasibility of the meso‐meso coupling reaction up to longer arrays and the sufficient solubility and chemical stability of the resultant porphyrin tapes, we prepared hybrid meso‐meso linked porphyrin arrays BOn up to 24‐mer, which have two different aryl groups, a 2,4,6‐tris(3,5‐di‐tert‐butylphenoxy) phenyl group (Ar1) and a 3,5‐dioctyloxy phenyl group (Ar2). All these arrays were effectively converted into the corresponding triply linked porphyrin tapes TBOn by oxidation with DDQ‐Sc(OTf)3. Importantly, the low energy Q‐band‐like absorption bands of TBOn are progressively red‐shifted with an increase in the number of porphyrins n until 16 but the red‐shift is saturated at n=16, indicating the ECL of the porphyrin tape to be around 14–16. The regularly introduced meso‐aryl bulky substituents impose facial encumbrance, hence leading to the effective suppression of π–π interactions as well as improvement of the chemical stabilities of TBOn .  相似文献   

12.
《化学:亚洲杂志》2017,12(15):1861-1864
Porphyrin‐based molecules have been widely used in dye‐sensitized solar cells and bulk heterojunction solar cells, but their application in field‐effect transistors (FETs) is limited. In this work, two conjugated polymers based on diketopyrrolopyrrole and porphyrin units were developed for FETs. The polymers exhibit extra‐low band gap with energy levels close to −4.0 eV and −5.0 eV due to the strong electron‐donating and withdrawing ability of porphyrin and diketopyrrolopyrrole. With additionally high crystalline properties, ambipolar charge carrier transports with a hole mobility of 0.1 cm2 V−1 s−1 in FETs were realized in these polymers, representing the highest performance in solution‐processed FETs based on porphyrin unit.  相似文献   

13.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

14.
A new activation principle in organocatalysis is presented: halide binding through Coulombic interactions. This mode of catalysis was realized by using 3,5‐di(carbomethoxy)pyridinium ions that carry an additional electron‐withdrawing substituent on the nitrogen atom, for example, pentafluorobenzyl or cyanomethyl. For the N‐pentafluorobenzyl derivative, Coulombic interaction with the pyridinium moiety is complemented in the solid state by anion–π interactions with the perfluorophenyl ring. Bromide and chloride are bound by these cations in a 1:1 stoichiometry. Catalysis of the C? C coupling between 1‐chloroisochroman (and related electrophiles) with silyl ketene acetals occurs at ?78 °C and at low catalyst loading (2 mol %).  相似文献   

15.
16.
17.
The synthesis and properties of biphenyl‐ and p‐terphenyl‐fused o‐carboranes are described. Aryl rings in the biphenyl and p‐terphenyl skeletons are highly coplanar because of the presence of the o‐carborane unit. o‐Carborane exhibits an electron‐withdrawing character via the inductive effect, resulting in a decrease in both the HOMO and LUMO levels of oligophenyls without causing electronic perturbation.  相似文献   

18.
19.
We describe the thermodynamic characterisation of the self‐sorting process experienced by two homodimers assembled by hydrogen‐bonding interactions through their cyclopeptide scaffolds and decorated with Zn–porphyrin and fullerene units into a heterodimeric assembly that contains one electron‐donor (Zn–porphyrin) and one electron‐acceptor group (fullerene). The fluorescence of the Zn–porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron‐transfer (PET) process occurring between the Zn–porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge‐separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo‐ and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound‐state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75–90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge‐transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75 % of the chromophores after excitation of both Zn–porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33 %). We conclude that the strength (stability constant (K)×effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn–porphyrin/fullerene cyclopeptide‐based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.  相似文献   

20.
Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier‐templated synthesis of a 12‐porphyrin nanoring. NMR and small‐angle X‐ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo‐oligomerization reaction. UV/Vis/NIR titrations show that the three‐component assembly of the 12‐porphyrin nanoring figure‐of‐eight template complex displays high allosteric cooperativity and chelate cooperativity. This nanoring–template 1:2 complex is among the largest synthetic molecules to have been characterized by single‐crystal analysis. It crystallizes as a racemate, with an angle of 27° between the planes of the two template units. The crystal structure reveals many unexpected intramolecular C?H???N contacts involving the tert‐butyl side chains. Scanning tunneling microscopy (STM) experiments show that molecules of the 12‐porphyrin template complex can remain intact on the gold surface, although the majority of the material unfolds into the free nanoring during electrospray deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号