首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We have established a convenient method for the base‐promoted direct amination of β‐unsubstituted 5,15‐diazaporphyrins (DAPs) with secondary and primary amines to produce 3,7,13,17‐tetraamino‐ and 3‐amino‐DAPs, respectively, regioselectively. The amino groups attached at the periphery cause significant red shifts of the absorption bands as a result of their perturbation of the HOMO and/or LUMO in the DAP π‐system. The palladium complex of a 3,7,13,17‐tetrakis(diphenylamino)‐DAP generated singlet oxygen in high yield under irradiation with near‐infrared light.  相似文献   

3.
The crystal structure of the title complex, [Ni(C6H14N2)2]Br2, consists of discrete [Ni(C6H14N2)2]2+ cations and bromide counter‐anions. The NiII ion is at the center of symmetry and is four‐coordinated by four nitro­gen donors of the mesocyclic ligand 1,5‐di­aza­cyclo­octane (DACO) [Ni—N 1.935 (2)–1.937 (2) Å]. The coordination geometry of NiII can be considered as square planar and both DACO ligands take the boat–chair conformation. The bromide anions are hydrogen bonded with the nitro­gen donors of the ligands to form a macrocycle‐like ring system.  相似文献   

4.
Reactions of 5-(p-aminophenyl)-10,15,20-triphenyl porphyrin (1) with Ru3(CO)12 or M(OCOCH3)2 (M=Ni,Mn) afforded metalloporphyrins(4-6),respectively.6-Deoxy-6-io-do-β-cyclodextrin(2) and mono(6-O-trifluoromethanesulfonyl) permethylated β-cyclodextrin(3) reacted with complexes 4-6 to give β-cyclodextrin bonded metal porphyrins (7-9) and permethylated β-cyclodextrin bonded me-tal porphyrins (10-12) respectively.These new complexes were identified by MS,IR,UV-visible and ^1H NMR spectra,and elemental analysis.  相似文献   

5.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

6.
The present paper reports the first comprehensive study on the synthesis, structures, optical and electrochemical properties, and peripheral functionalizations of nickel(II) and copper(II) complexes of β-unsubstituted 5,15-diazaporphyrins (M-DAP; M = Ni, Cu) and pyridazine-fused diazacorrinoids (Ni-DACX; X = N, O). These two classes of compounds were constructed starting from mesityldipyrromethane by a metal-template method. Ni-DAP and Cu-DAP were prepared in high yields by the reaction of the respective metal-bis(dibromodipyrrin) complexes with NaN(3)-CuX (X = I, Br), whereas Ni-DACN and Ni-DACO were formed as predominant products by the reaction with NaN(3). In both cases, the metal centers change their geometry from tetrahedral to square planar during the aza-annulation; X-ray crystallographic analyses of M-DAPs showed highly planar diazaporphyrin π planes. The Q band of Ni-DAP was redshifted and intensified compared with that of a nickel-porphyrin reference, due to the involvement of electronegative nitrogen atoms at the meso positions. It was found that the peripheral bromination of Ni-DAP and Ni-DACO occurred regioselectively to afford Ni-DAP-Br(4) and Ni-DACO-Br, respectively. These brominated derivatives underwent Stille reactions with tributyl(phenyl)stannane to give the corresponding phenylated derivatives, Ni-DAP-Ph(4) and Ni-DACO-Ph. On the basis of the absorption spectra and X-ray analysis, it has been concluded that the attached phenyl groups efficiently conjugate with the diazaporphyrin π system. The present results unambiguously corroborate that the β-unsubstituted DAPs and DACXs are promising platforms for the development of a new class of π-conjugated azaporphyrin-based materials.  相似文献   

7.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

8.
Eight metal(II) complexes based on imidazo[4, 5‐f]‐1, 10‐phenanthroline (HIMP) and bridging dicarboxylato ligands such as 4, 4′‐biphenyldicarboxylic acid (H2BPDC), 1, 4‐benzenedicarboxylic acid (H2BDC), thiophene‐2, 5‐dicarboxylic acid (H2TDC), and 2, 6‐naphthalenedicarboxylic acid (H2NDC) were hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction. Complexes 1 , 3 , 6 , and 7 are molecular dinuclear metal complexes. Complexes 2 , 4 , and 5 exhibit chain‐like structures. Compound 8 shows a novel 3D architecture, in which ZnII dimers are connected by four NDC2– anions. In the metal(II) complexes, HIMP exhibits a similar chelating coordination mode. Different π ··· π stacking interactions are observed in the complexes. The emission of HIMP is completely quenched in complexes 1 – 4 due to the strong π ··· π stacking interactions in the structures. Complexes 5 – 8 exhibit different photoluminescence properties. Firstly, we quantitatively investigated the effect of the strong HIMP–HIMP stacking interactions on the emission quenching of HIMP in the metal complexes. It was found that a higher extent of π ··· π stacking interactions in the complexes resulted in a higher extent of the emission quenching of HIMP. The introduction of aromatic conjugated carboxylate groups into metal(II)‐HIMP complexes changed the extent of the strong π ··· π stacking interactions in the structures and thus the photoluminescence properties of the complexes.  相似文献   

9.
In the title compound, [Ni(C12H11N2)2], the NiII cation lies on an inversion centre and has a square‐planar coordination geometry. This transition metal complex is composed of two deprotonated N,N′‐bidentate 2‐[(phenylimino)ethyl]‐1H‐pyrrol‐1‐ide ligands around a central NiII cation, with the pyrrolide rings and imine groups lying trans to each other. The Ni—N bond lengths range from 1.894 (3) to 1.939 (2) Å and the bite angle is 83.13 (11)°. The Ni—N(pyrrolide) bond is substantially shorter than the Ni—N(imino) bond. The planes of the phenyl rings make a dihedral angle of 78.79 (9)° with respect to the central NiN4 plane. The molecules are linked into simple chains by an intermolecular C—H...π interaction involving a phenyl β‐C atom as donor. Intramolecular C—H...π interactions are also present.  相似文献   

10.
Single‐crystal X‐ray characterization of cationic (α‐diimine)Ni‐ethyl and isopropyl β‐agostic complexes, which are key intermediates in olefin polymerization and oligomerization, are presented. The sharp Ni‐Cα‐Cβ angles (75.0(3)° and 74.57(18)°) and short Cα−Cβ distances (1.468(7) and 1.487(5) Å) provide unambiguous evidence for a β‐agostic interaction. An inverse equilibrium isotope effect (EIE) for ligand coordination upon cleavage of the agostic bond highlights the weaker bond strength of Ni−H relative to the C−H bond. An Eyring plot for β‐hydride elimination–olefin rotation–reinsertion is constructed from variable‐temperature NMR spectra with 13C‐labeled agostic complexes. The enthalpy of activation (ΔH ) for β‐H elimination is 13.2 kcal mol−1. These results offer important mechanistic insight into two critical steps in polymerization: ligand association upon cleavage of the β‐agostic bonds and chain‐migration via β‐H elimination.  相似文献   

11.
A series of late transition metal complexes, [(bpma)Co(μ – Cl)Cl] 2 , [(bpma)Cu(μ – Cl)Cl] 2 , [(bpma)Zn(μ – Cl)Cl] 2 and [(bpma)Cd(μ – Br)Br] 2 (where bpma is 4‐bromo‐N‐((pyridin‐2‐yl)methylene)benzenamine) have been synthesized and structurally characterized. The X‐ray structures of dimeric complexes [(bpma)M(μ – X)X] 2 (M = Co, Cu and Zn, X = Cl; M = Cd, X = Br) showed a distorted 5‐coordinate trigonal bipyramidal geometry involving two nitrogen atoms of N,N‐bidentate ligand, two bridged and one terminal halogen atoms. The complex [(bpma)Cu(μ – Cl)Cl] 2 revealed the highest catalytic activity for the polymerisation of methyl methacrylate in the presence of modified methylaluminoxane with an activity of 9.14 × 104 g PMMA/mol·Cu·h at 60 °C and afforded syndiotactic poly (methylmethacrylate) (rr = 0.69).  相似文献   

12.
A series of 1‐(2,6‐dibenzhydryl‐4‐fluorophenylimino)‐ 2‐aryliminoacenaphthylene derivatives ( L1–L5 ) and their halonickel complexes LNiX2 (X = Br, Ni1–Ni5 ; X = Cl, Ni6–Ni10 ) are synthesized and well characterized. The molecular structures of representative complexes Ni2 and Ni4 are confirmed as the distorted tetrahedron geometry around nickel atom by the single crystal X‐ray diffraction. Upon activation with methylaluminoxane, all nickel complexes show high activities up to 1.49 × 107 g of PE (mol of Ni)?1 h?1 toward ethylene polymerization, producing polyethylenes with high branches and molecular weights up to 1.62 × 106 g mol?1 as well as narrow polydispersity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1369–1378  相似文献   

13.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

14.
3‐Pyridyl‐5,15‐diazaporphyrin nickel(II) serves as a bidentate metalloligand for platinum(II), ruthenium(II), and rhenium(I) metal centers. Single‐crystal X‐ray diffraction analysis of these metal complexes unambiguously reveals the presence of a dative bond between the outer metal center and the meso‐nitrogen atom. The UV/Vis absorption spectra of the complexes show substantially red‐shifted bands which are perturbed by outer‐metal coordination. This is due to the contribution of metal‐to‐ligand charge transfer interactions.  相似文献   

15.
The tetradentate N2S2 Schiff base ligand 3,3′‐[2,2′‐(ethyl­ene­di­oxy)di­benzyl­idene]­bis­(S‐methyl di­thio­car­ba­zate) (H2L), prepared by the condensation of S‐methyl di­thio­carb­aza­te with 1,4‐bis(2‐formyl­phenyl)‐1,4‐dioxa­butane in a 1:2 molar ratio, reacts with nickel acetate to form the title neutral metal complex, [Ni(C20H20N4O2S4)]. The X‐ray structure of the complex shows a distorted square‐planar geometry around the Ni atom. The monomeric units are weakly associated into dimers via a long Ni?S interaction [3.569 (1) Å]. These dimeric units are then linked by C—H?S intermolecular contacts to form a polymeric chain along the a axis.  相似文献   

16.
The first examples of β–β directly linked, acetylene‐bridged, and butadiyne‐bridged 5,15‐diazaporphyrin dimers have been prepared by palladium‐catalyzed coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl). The effects of the linking modes and meso‐nitrogen atoms on the structural, optical, electrochemical, and magnetic properties of the distributed π systems were investigated by using X‐ray crystallography, UV/Vis absorption spectroscopy, DFT calculations, cyclic voltammetry, and ESR spectroscopy. Both the electronic and steric effects of the meso‐nitrogen atoms play an important role in the highly coplanar geometry of the directly linked dimers. The direct β–β linkage produces enhanced π conjugation and electron‐spin coupling between the two diazaporphyrin units.  相似文献   

17.
A penta‐coordinated Ni(II) complex with a 1,5‐diazacyclooctane (DACO) ligand functionalized by two imidazole donor pendants, [NiL1Cl] (ClO4) H2O (1) (where L1 = 1,5‐bis (imidazol‐4‐ylmethyl)‐l,5‐diazacyclooctane) has been synthesized and characterized by X‐ray diffraction, infrared spectra, elemental analyses, conductance, thermal analyses and UV‐Vis techniques. Complex 1 crystallizes in triclinic crystal system, P‐l space group with a = 0.74782(7), b = 1.15082 (10), c = 1.23781(11) nm, α = 82.090(2), β = 73.011(2), γ = 83.462(2)°, V = 1.00603(16) nm3, M, = 486.00, Z = 2, Dc = 1.604 g/cm3, final R = 0.0435, and wR = 0.1244. The structures of 1 and its related complexes show that in all the three mononuclear complexes, each Ni(II) center is penta‐coordinated with a near regular square pyramid (RSP) to distorted square‐pyramidal (DSP) coordination environment due to the boat/chair configuration of DACO ring in these complexes, and the degree of distortion increases with the augment of the size of the heterocyclic pendants. In addition, the most striking feature of complex 1 resides in the formation of a two‐dimensional network structure through hydrogen bonds and stabilized by π‐π stacking. The solution behaviors of the Ni(II) complexes are also discussed in detail.  相似文献   

18.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

19.
Monomer of N‐[4‐(5‐methyl‐isoxazol‐3‐ylsulfamoyl)‐phenyl]‐acrylamide (HL) and some transition metal polymeric complexes of the general formula {[M(HL)(OH2)2(OCOCH3)2] xH2O}n (M = Co(II), x = 2; Ni(II), x = 3; Mn(II), x = 2) and [Cd(HL)2(OCOCH3)2] were synthesized and characterized by elemental analysis, IR, UV spectroscopy, conductance measurements, magnetic susceptibility, thermogravimetric analyses and X‐ray diffraction analysis. In all polymer complexes, the spectral data revealed that the ligand act as bidentate neutral molecule and coordinate to metal ion through enolic sulphonamide OH and isoxazol‐N. In all polymer complexes, the spectral data revealed that the ligand act as bidentate neutral molecule and coordinate to metal ion through enolic sulphonamide OH and isoxazol‐N. The molar conductance data revealed that the polymer complexes are non‐electrolytes while UV‐vis and magnetic measurements data have been shown that the polymer complexes have octahedral geometry. All the studies revealed coordination six for the metals in all the polymer complexes and octahedral structures were suggested. The inhibitive effect of HL against C38 steel was investigated in 2 M HCl solution (tafel polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) methods). The type of HL is mixed inhibitor whose adsorption habit onto C38 steel.  相似文献   

20.
Addition of 1,2‐phenylenediamine to solutions ofbis(1,1,1,5,5,5‐hexafluoropentane‐2,4‐dionato‐O,O′)cobalt(II),‐iron(II) and ‐nickel(II) resulted in crystals containing centrosymmetric octahedral complexes with two amines per metal atom. In all three iso­structural complexes, i.e. [M(C5HF6O2)2(C6H8N2)2] where M = Fe, Cu and Ni, the two C—N bonds differ significantly in length by an average of 0.031 (3) Å. The phenyl C—C bonds display a pattern of small differences, the C—C bond between the amines being longer than the shortest phenyl C—C bonds by an average of 0.022 (4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号