首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ming Zhou 《Electroanalysis》2015,27(8):1786-1810
Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self‐powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs‐based self‐powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical‐to‐electrochemical energy transformation, thus obviating the requirement of external power sources. Following my previous review (Electroanalysis­ 2012 , 24, 197–209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs‐based self‐powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs‐based self‐powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co‐stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs‐based self‐powered electrochemical biosensors and logic biosensors are discussed in the end.  相似文献   

2.
Recent advances in CRISPR based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of biomolecular sensors for diagnosing diseases and understanding cellular pathways. The key attribute that allows CRISPR to be widely utilized is the programmable and highly selective mechanism. In this Minireview, we first illustrate the molecular principle of CRISPR functioning process from sensing to actuating. Next, the CRISPR based biosensing strategies for nucleic acids, proteins and small molecules are summarized. We highlight some of recent advances in applications for in vitro detection of biomolecules and in vivo imaging of cellular networks. Finally, the challenges with, and exciting prospects of, CRISPR based biosensing developments are discussed.  相似文献   

3.
Autonomous micro‐/nanomachines that can convert diverse energy sources into effective locomotion under the constraint of low Reynolds numbers hold considerable promise for a variety of applications, such as cargo delivery, localized biosensing, nanosurgery, and detoxification. In this Minireview, we briefly overview recent advances in the development of micro‐/nanomachines that are specifically powered by ultrasound, in particular new concept design, their working principles, and their fabrication and manipulation strategies. Finally, the exclusive biocompatibility and sustainability of ultrasound‐powered micro‐/nanomachines, as well as the critical challenges that face their in vivo application, are discussed to provide insight for the next phase of micro‐/nanomachines with versatile functionalities and enhanced capabilities.  相似文献   

4.
《化学:亚洲杂志》2017,12(16):2008-2028
T he use of nonfluorescent azo dyes as dark quenchers in activatable optical bioprobes based on the Förster resonance energy transfer (FRET) mechanism and designed to target a wide range of enzymes has been established for over two decades. The key value of the azo moiety (−N=N−) to act as an efficient “ON–OFF” switch of fluorescence once introduced within the core structure of conventional organic‐based fluorophores (mainly fluorescent aniline derivatives) has recently been exploited in the development of alternative reaction‐based small‐molecule probes based on the “profluorescence” concept. These unprecedented “azobenzene‐caged” fluorophores are valuable tools for the detection of a wide range of reactive (bio)analytes. This review highlights the most recent and relevant advances made in the design and biosensing/bioimaging applications of azo‐based fluorogenic probes. Emphasis is also placed on relevant achievements in the synthesis of bioconjugatable/biocompatible azo dyes used as starting building blocks in the rational and rapid construction of these fluorescent chemodosimeters. Finally, a brief glimpse of possible future biomedical applications (theranostics) of these “smart” azobenzene‐based molecular systems is presented.  相似文献   

5.
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point‐of‐care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting‐edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point‐of‐care systems, such as rapid readout, simple biosensor fabrication method, ultra‐high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point‐of‐care system, benefiting global healthcare.  相似文献   

6.
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria.  相似文献   

7.
This Review covers photonic crystals (PhCs) and their use for sensing mainly chemical and biochemical parameters, with a particular focus on the materials applied. Specific sections are devoted to a) a lead‐in into natural and synthetic photonic nanoarchitectures, b) the various kinds of structures of PhCs, c) reflection and diffraction in PhCs, d) aspects of sensing based on mechanical, thermal, optical, electrical, magnetic, and purely chemical stimuli, e) aspects of biosensing based on biomolecules incorporated into PhCs, and f) current trends and limitations of such sensors.  相似文献   

8.
A stable ruthenium‐based redox label, Ru(acetylacetonate)2(bipyridine‐NH2), has been synthesized with the target of circumventing the problem associated with the use of ferrocene for biosensing in solutions containing chloride ions. The redox species was shown to be highly stable with repeated cycling in biological buffers as well as being amenable to surface coupling reactions. To demonstrate the latter, the redox label was anchored onto a self‐assembled monolayer of 6‐mercaptohexanoic acid, using carbodiimide coupling, followed by binding of a pentapeptide to the redox label.  相似文献   

9.
Two-dimensional layered inorganic solids, such as cationic clays and layered double hydroxides (LDHs), also defined as anionic clays, have open structures which are favourable for interactions with enzymes and which intercalate redox mediators. This review aims to show the interest in clays and LDHs as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. It is meant to provide an overview of the various types of electrochemical biosensors that have been developed with these 2D layered materials, along with significant advances over the last several years. The different biosensor configurations and their specific transduction procedures are discussed.   相似文献   

10.
An ultrasensitive biosensing platform for DNA and protein detection is constructed based on the luminescence quenching ability of plasmonic palladium nanoparticles (PdNPs). By growing the particles into large sizes (ca. 30 nm), the plasmonic light absorption of PdNPs is broadened and extended to the visible range with extinction coefficients as high as 109 L mol?1 cm?1, enabling complete quenching of fluorescent dyes that emit at diverse ranges and that are tagged to bioprobes. Meanwhile the nonspecific quenching of the dyes (not bound to probes) is negligible, leading to extremely low background signal. Utilizing the affinity of PdNPs towards bioprobes, such as single‐stranded (ss) DNA and polypeptide molecules, which is mainly assigned to the coordination interaction, nucleic acid assays with a quantification limit of 3 pM target DNA and protein assay are achieved with a simple mix‐and‐detect strategy based on the luminescence quenching‐and‐recovery protocol. This is the first demonstration of biosensing employing plasmonic absorption of nanopalladium, which offers pronounced sensing performances and can be reasonably expected for wide applications.  相似文献   

11.
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel‐based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore‐forming compounds. Channel‐forming compounds, such as receptor ion‐channels, channel‐forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane‐bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.  相似文献   

12.
Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom‐thick 2D structure with sp2 hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy‐related progress of GR‐based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye‐sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR‐based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy‐metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR‐based materials in the exciting fields of energy, environment, and bioscience.  相似文献   

13.
This article reviews biomolecular logic systems for bioanalytical applications, specifically concentrating on the prospects and fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals. Such digitally processed information produces a final output in the form of a yes/no response through Boolean logic networks composed of biomolecular systems, and hence leads to a high-fidelity biosensing compared with traditional single (or parallel) sensing devices. It also allows direct coupling of the signal processing with chemical actuators to produce integrated “smart” “sense/act” (biosensor-bioactuator) systems. Unlike common biosensing devices based on a single input (analyte), devices based on biochemical logic systems require a fundamentally new approach for the sensor design and operation and careful attention to the interface of biocomputing systems and electronic transducers. As common in conventional biosensors, the success of the enzyme logic biosensor would depend, in part, on the immobilization of the biocomputing reagent layer. Such surface confinement provides a contact between the biocomputing layer and the transducing surface and combines efficiently the individual logic-gate elements. Particular attention should thus be given to the composition, preparation, and immobilization of the biocomputing surface layer, to the role of the system scalability, and to the efficient transduction of the output signals. By processing complex patterns of multiple physiological markers, such multisignal digital biosensors should have a profound impact upon the rapid diagnosis and treatment of diseases, and particularly upon the timely detection and alert of medical emergencies (along with immediate therapeutic intervention). Other fields ranging from biotechnology to homeland security would benefit from these advances in new biocomputing biosensors and the corresponding closed-loop “add/act” operation.  相似文献   

14.
15.
Current paper‐based potentiometric ion‐sensing platforms are planar devices used for clinically relevant ions. These devices, however, have not been designed for the potentiometric biosensing of proteins or small molecule analytes. A three‐dimensional origami paper‐based device, in which a solid‐contact ion‐selective electrode is integrated with an all‐solid‐state reference electrode, is described for the first time. The device is made by impregnation of paper with appropriate bioreceptors and reporting reagents on different zones. By folding and unfolding the paper structures, versatile potentiometric bioassays can be performed. A USB‐controlled miniaturized electrochemical detector can be used for simple and in situ measurements. Using butyrylcholinesterase as a model enzyme, the device has been successfully applied to the detection of enzyme activities and organophosphate pesticides involved in the enzymatic system as inhibitors. The proposed 3D origami paper device allows the potentiometric biosensing of proteins and small molecules in a simple, portable, and cost‐effective way.  相似文献   

16.
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD‐based bio‐interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA‐programmed dynamic assembly of multi‐color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)‐based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half‐adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD‐biocomputing‐based intelligent molecular diagnostics.  相似文献   

17.
以抗体-抗原免疫识别、 核酸碱基互补配对识别以及核酸适体-配体识别这3种分子识别方式分类, 综述了近几年基于分子识别的细菌检测研究工作进展, 总结了细菌检测相关研究存在的一些挑战, 并展望了该领域的发展前景.  相似文献   

18.
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising technology in the biological world. As one of the CRISPR-associated (Cas) proteins, Cas12a is an RNA-guided nuclease in the type V CRISPR-Cas system, which has been a robust tool for gene editing. In addition, due to the discovery of target-binding-induced indiscriminate single-stranded DNase activity of Cas12a, CRISPR-Cas12a also exhibits great promise in biosensing. This minireview not only gives a brief introduction to the mechanism of CRISPR-Cas12a but also highlights the recent developments and applications in biosensing and gene regulation. Finally, future prospects of the CRISPR-Cas12a system are also discussed. We expect this minireview will inspire innovative work on the CRISPR-Cas12a system by making full use of its features and advantages.  相似文献   

19.
荧光纳米生物传感平台由于具有灵敏度高、选择性好、操作简单、成本低、实时监测等特点,吸引了广泛的关注.近年来,随着纳米技术的飞速发展,具有纳米结构的材料(纳米材料)在生物传感领域显示出独特的优势.与传统材料相比,纳米材料显示出独特的物化性质,如光学、电学、机械、催化和磁性等.金属(如Au、Ag、Cu及其合金)纳米簇(MN...  相似文献   

20.
Molecular spectroscopy provides unique information on the internal structure of biological materials by detecting the characteristic vibrational signatures of their constituent chemical bonds at infrared frequencies. Nanophotonic antennas and metasurfaces have driven this concept towards few‐molecule sensitivity by confining incident light into intense hot spots of the electromagnetic fields, providing strongly enhanced light‐matter interaction. In this Minireview, recently developed molecular biosensing approaches based on the combination of dielectric metasurfaces and imaging detection are highlighted in comparison to traditional plasmonic geometries, and the unique potential of artificial intelligence techniques for nanophotonic sensor design and data analysis is emphasized. Because of their spectrometer‐less operation principle, such imaging‐based approaches hold great promise for miniaturized biosensors in practical point‐of‐care or field‐deployable applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号