首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The properties of liquid‐crystalline (LC) hybrid systems made of inorganic nanoparticles grafted with photosensitive azo compounds are presented. For materials with a large density of azo ligands at the surface, the LC structure can be reversibly melted by UV light, and the return to the LC state does not require the absorption of visible light. For systems with a lower density of azo ligands, UV light causes shortening of the distance between metal sublayers in the lamellar phase. Interestingly, the azo derivatives attached to the nanoparticle surface show very different kinetics of cis/trans conformational change as compared to the free molecules. The cis form of free ligands in solution is stable for days, whereas the isomerization of molecules attached to the nanoparticle surface to the trans form takes only a few minutes. Apparently, owing to the crowded environment, azo ligands immobilized at a metal surface behave as they would in the condensed state.  相似文献   

3.
In the 21st century, soft materials will become more important as functional materials because of their dynamic nature. Although soft materials are not as highly durable as hard materials, such as metals, ceramics, and engineering plastics, they can respond well to stimuli and the environment. The introduction of order into soft materials induces new dynamic functions. Liquid crystals are ordered soft materials consisting of self‐organized molecules and can potentially be used as new functional materials for electron, ion, or molecular transporting, sensory, catalytic, optical, and bio‐active materials. For this functionalization, unconventional materials design is required. Herein, we describe new approaches to the functionalization of liquid crystals and show how the design of liquid crystals formed by supramolecular assembly and nano‐segregation leads to the formation of a variety of new self‐organized functional materials.  相似文献   

4.
By using a chiral molecular motor as a dopant in a cholesteric liquid‐crystalline film, fully reversible control of the reflection color of this film across the entire visible spectrum is possible. The large difference in helical twisting power between the two isomeric forms of the motor allows efficient light‐ and heat‐induced switching of the helicity of the cholesteric liquid‐crystal superstructure.  相似文献   

5.
While the unique optical properties of liquid crystals (LCs) are already well exploited for flat‐panel displays, their intrinsic ability to self‐organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid‐crystalline materials as organic semiconductors, which are solvent‐processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli‐responsive macroscopic shape change of cross‐linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid‐crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.  相似文献   

6.
7.
We examined the self‐organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1‐butyl‐3‐methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid–crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self‐organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen‐bond, van der Waals, and π‐π interactions.  相似文献   

8.
Bis‐[60]fullerodendrimers were synthesized by assembling [60]fullerene‐containing type I (terminal olefin) and type II (α,β‐unsaturated carbonyl olefin) olefins through the olefin cross‐metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono‐[60]fullerodendrimers and their [60]fullerene‐free analogues. First‐ and second‐generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid‐crystalline promoters. The liquid‐crystalline properties were studied by polarized optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering. In agreement with the nature and structure of the dendrimers, nematic, smectic, and multisegregated lamellar phases were observed. Owing to its versatility and tolerance towards many functional groups, olefin cross‐metathesis proved to be a reaction of choice for the elaboration of molecular materials with complex architectures.  相似文献   

9.
Aerogels of high porosity and with a large internal surface area exhibit outstanding performances as thermal, acoustic, or electrical insulators. However, most aerogels are mechanically brittle and optically opaque, and the structural and physical properties of aerogels strongly depend on their densities. The unfavorable characteristics of aerogels are intrinsic to their skeletal structures consisting of randomly interconnected spherical nanoparticles. A structurally new type of aerogel with a three‐dimensionally ordered nanofiber skeleton of liquid‐crystalline nanocellulose (LC‐NCell) is now reported. This LC‐NCell material is composed of mechanically strong, surface‐carboxylated cellulose nanofibers dispersed in a nematic LC order. The LC‐NCell aerogels are transparent and combine mechanical toughness and good insulation properties. These properties of the LC‐NCell aerogels could also be readily controlled.  相似文献   

10.
A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized, and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, ^1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared polymer electrolyte has reached 8.83 × 10 ^-4 S·cm^-1 at room temperature. Thermogravimetry (TG) of the polymer electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.  相似文献   

11.
Liquid‐crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels–Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo‐ to exo‐product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo‐product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo‐ and endo‐transition states in solvents with layered, smectic ordering compared to those that are isotropic.  相似文献   

12.
13.
High‐density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface‐initiated living polymerization. We show herein a new method to prepare a high‐density polymer brush architecture using surface segregation and self‐assembly of diblock copolymers containing a side‐chain liquid‐crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP‐PS diblock copolymer upon annealing above the glass‐transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self‐assembly on the polystyrene base film.  相似文献   

14.
Summary: Organisation behaviours of spherical particles suspended in sheared, lyotropic, liquid‐crystalline polymer solutions have been investigated using polarizing optical microscopy. We find that in a nematic phase the particles phase separate and adopt anisotropic chain‐like structures along the director. An earring defect is observed around a single particle whereas a cross or strings defect between neighbouring particles is found to serve as a repulsive barrier to prevent the particles from contacting each other. A theoretical analysis is presented to explain this new phenomenon.

An optical micrograph of 0.01 wt.‐% glass spheres suspended in a nematic solution of 40 wt.‐% ethyl cellulose in chloroform under an external shear force.  相似文献   


15.
16.
17.
18.
Blue‐ and green‐emitting cyclometalated liquid‐crystalline iridium complexes are realized by using a modular strategy based on strongly mesogenic groups attached to an acetylacetonate ancillary ligand. The cyclometalated ligand dictates the photophysical properties of the materials, which are identical to those of the parent complexes. High hole mobilities, up to 0.004 cm2 V?1 s?1, were achieved after thermal annealing, while amorphous materials show hole mobilities of only approximately 10?7–10?6 cm2 V?1 s?1, similar to simple iridium complexes. The design strategy allows the facile preparation of phosphorescent liquid‐crystalline complexes with fine‐tuned photophysical properties.  相似文献   

19.
A class of new ionic liquid (IL)‐based nonaqueous lyotropic liquid crystals (LLCs) and the development of an efficient IL extraction process based on LC chemistry are reported. The nonaqueous LLCs feature extraordinarily high extraction capacity, excellent separation selectivity, easy recovery, and biocompatibility. This work also demonstrates that the introduction of self‐assembled anisotropic nanostructures into an IL system is an efficient way to overcome the intrinsically strong polarity of ILs and enhances the molecular recognition ability of ILs. The distribution coefficients of IL‐based LLCs for organic compounds with H‐bond donors reached unprecedented values of 50–60 at very high feed concentrations (>100 mg mL?1), which are 800–1000 times greater than those of common ILs as well as traditional organic and polymer extractants. The IL‐based nonaqueous LLCs combining the unique properties of ILs and LCs open a new avenue for the development of high‐performance extraction methods.  相似文献   

20.
The achiral sodium salt of poly(4‐carboxyphenyl isocyanide) (poly‐ 1 –Na) folds into a one‐handed helix induced by optically active amines in water. The induced helicity remains when the optically active amines are completely removed, and further modification of the side groups to amide residues is possible without loss of memory of macromolecular helicity. Although the helical poly‐ 1 –Na loses its chiral memory at high temperature, helical polyisocyanides modified with achiral primary amines, which no longer have any chiral components, keep their memory perfectly even at 100 °C in N,N‐dimethylformamide in some cases and exhibit cholesteric liquid‐crystalline phases, thus providing a robust scaffold with heat resistance to which a variety of functional groups can be introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号