首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic degradation of pollutants under visible light provides a new door to solve the water contamination problem by utilizing free and renewable sunlight. The search for highly efficient photocatalysts with hierarchical nanostructures remains crucial for accessing this new door. In this work, a new hierarchical nanostructured photocatalyst is designed and synthesized, for the first time, by anchoring In2S3 flower‐like nanostructures on non‐woven carbon nanofiber (CNF). The nanostructures of these CNF–In2S3 composites were fine‐tuned, with the aim of achieving the highest photocatalytic activity under visible light. The formation mechanism of the hierarchical nanostructure is also investigated. The results indicate that the optimized hierarchical CNF–In2S3 photocatalyst is superior in photodegradation and disinfection efficiency to that of pure In2S3 under visible‐light irradiation. The prominent photocatalytic activities of these hierarchical CNF–In2S3 photocatalysts can be attributed to the excellent properties of enhanced light absorption, large surface area, and efficient charge separation, which are all derived from the special three‐dimensional hierarchical nanostructures. Therefore, this work presents the great potential of this hierarchical nanostructured CNF–In2S3 photocatalyst in practical environmental remediation fields.  相似文献   

2.
The preparation of 3D hierarchical nanostructures by a simple and versatile strategy of self‐assembly of dopamine (DA) and phosphotungstic acid (PTA) is described. The size and morphology of the hierarchical nanostructures could be simply controlled by varying the ratio of the two components, their concentrations, and the pH of the initial Tris‐HCl solution. The self‐assembly of the flowerlike microspheres has been found to involve a two‐stage growth process. Moreover, use of the hierarchical nanostructures as a possible carrier for an anticancer drug in chemotherapy has been explored. The nanostructures showed an intriguing pH‐dependent release behavior, making them promising for applications in biomedical science.  相似文献   

3.
Li Y  Zheng M  Ma L  Zhong M  Shen W 《Inorganic chemistry》2008,47(8):3140-3143
Grid-structured ZnO microsphere arrays assembled by uniform ZnO nanorods were fabricated by noncatalytic chemical vapor deposition, taking advantage of morphologies of alumina nanowire pyramid substrates and ZnO oriented growth habits. Every ZnO microsphere (similar to the micropapilla on a lotus leaf surface) is assembled by over 200 various oriented ZnO nanorods (similar to the hairlike nanostructures on mircopapilla of a lotus leaf). This lotus-leaf-like ZnO micro-nanostructure films reveal superhydrophobicity and ultrastrong adhesive force to liquid. The realization of this hierarchical ZnO nanostructure film could be important for further understanding wettability of biological surfaces with micro-nanostructure and application in microfluidic devices.  相似文献   

4.
Inorganic nanomaterials endowed with hierarchical chirality could open new horizons in physical theory and applications because of their fascinating properties. Here, we report chiral ZnO films coated on quartz substrates with a hierarchical nanostructure ranging from atomic to micrometer scale. Three levels of hierarchical chirality exist in the ZnO films: helical ZnO crystalline structures that form primary helically coiled nanoplates, secondary helical stacking of these nanoplates, and tertiary nanoscale circinate aggregates formed by several stacked nanoplates. These films exhibited optical activity (OA) at 380 nm and in the range of 200–800 nm and created circularly polarized luminescence centered at 510 nm and Raman OA at 50–1400 cm?1, which was attributed to electronic transitions, scattering, photoluminescent emission, and Raman scattering in a dissymmetric electric field. The unprecedented strong OA could be attributed to multiple light scattering and absorption‐enhanced light harvesting in the hierarchical structures.  相似文献   

5.
Structure‐forming processes leading to biominerals are well worth learning in pursuit of new synthetic techniques. Strategies that attempt to mimic nature in vitro cannot replace an entire complex natural organism, requiring ingenuity beyond chemists′ hands. A “bioprocess‐inspired synthesis” is demonstrated for fabrication of N‐doped TiO2 materials at ambient temperature by direct implantation of precursor into living mussels. The amorphous precursor transforms into N‐doped anatase TiO2 with a hierarchical nanostructure. Synthetic TiO2 exhibits high phase stability and enhanced visible‐light photocatalytic activity as a result of modifications to its band gap during in vivo mineralization. Intracellular proteins were found to be involved in TiO2 mineralization. Our findings may inspire material production by new synthetic techniques, especially under environmentally benign conditions.  相似文献   

6.
Synthesis of flowerlike Zn nanoplate aggregates by vapor deposition is reported. Zn, ZnO and activated carbon powders were used as evaporation sources. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectroscopy were employed to characterize the samples. The obtained flowerlike nanostructures had high-crystalline, super-thin and crystallographic-oriented nanopetals. The two-dimensional structures of Zn nanoplates have potential application in sensor and nanodevices.  相似文献   

7.
ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [002] direction for linear structures. Photoluminescence spectra of the as-grown nanostructures revealed oxygen-vacancy-related defects in them, which could be reduced by air annealing at 250 degrees C. Possible mechanisms for the variation of morphology with synthesis parameters are discussed.  相似文献   

8.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

9.
Novel ZnO/N‐doped helical carbon nanotubes (ZnO/N‐HCNTs) composites were successfully synthesized via a facile chemical precipitation approach at room temperature. The sample was well characterized by X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity was evaluated in the degradation of methylene blue (MB) aqueous solution under UV light irradiation. It is found that ZnO nanoparticles were highly and uniformly anchored on the surface and inner tubes of the N‐HCNTs with size of about 5 nm, and significantly enhanced the photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity of ZnO/N‐HCNTs composites can be ascribed to the integrative synergistic effect of effective interfacial hybridization between N‐HCNTs and ZnO nanoparticles and the prolonged lifetime of photogenerated electron–hole pairs. Moreover, the ZnO/N‐HCNTs could be easily recycled without any obvious decrease in photocatalytic activity and could be promote their application in the area of environmental remediation.  相似文献   

10.
簇形和花形CdS纳米结构的自组装及光催化性能   总被引:3,自引:0,他引:3  
通过可控溶剂热法, 利用乙二胺作为模板制备出簇形和花形硫化镉(CdS)纳米结构. 通过X射线衍射(XRD)和扫描电镜(SEM)观测其形貌和结构特征. XRD谱线显示, 簇形CdS为六方晶体结构, 而花形CdS纳米结构则为立方晶体. 实验结果表明, 整个自组装过程是由成核以及成核竞争引起的不同生长过程所组成的, 并且乙二胺的模板功能起了重要的作用. 通过不同时间和温度的实验, 深入探讨了簇形和花形CdS纳米结构的自组装机理. 室温光致发光谱(PL)显示这两种纳米结构在433 nm和565 nm附近有较强的发射峰, 分别对应激子发射和表面缺陷发光. 通过Brunauer-Emmett-Teller (BET)方法测试其比表面积. 研究了高压汞灯照射下, 簇形和花形CdS纳米结构在甲基橙(MeO)溶液中的光催化性能. 结果显示, 由于其较大的比表面积, 花形CdS纳米结构的光催化性能要远优于其它CdS材料.  相似文献   

11.
Three‐dimensional (3D) flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures were synthesized by a simple and direct solvothermal route without any linker shell. The results indicated that the size of the 3D flowerlike hierarchical microspheres was about 420 nm and the shell was composed of several nanosheets with a thickness of 4–10 nm and a width of 100–140 nm. The saturation magnetization of the superparamagnetic composite microspheres was about 41 emu g?1 at room temperature. Moreover, the Fe3O4@Bi2O3 composite microspheres showed much higher (7–10 times) photocatalytic activity than commercial Bi2O3 particles under visible‐light irradiation. The possible formation mechanism was proposed for Ostwald ripening and the self‐assembled process. This novel composite material may have potential applications in water treatment, degradation of dye pollutants, and environmental cleaning, for example.  相似文献   

12.
通过热水解法, 以氧化锌为模板, 成功制备出形貌均一的ZnO/ZnSe复合纳米结构. 为了对比不同O/Se比对光催化性能的影响, 保持其它反应参数不变, 调节还原剂水合肼的用量, 得到不同硒化程度的ZnO/ZnSe复合纳米结构. 采用场发射扫描电子显微镜、 X射线衍射仪和透射电子显微镜对样品的形貌及结构进行了表征, 通过测试该复合结构对亚甲基蓝的可见光催化降解评估了其光催化效率. 结果表明, 与纯ZnO比, ZnO/ZnSe复合结构在可见光区域和紫外光区域的光吸收范围变宽, 显示出较高的光催化效率. 原因在于ZnSe导带上的电子在扩散势能的作用下迁移到ZnO的导带上, 而空穴仍保留在ZnSe价带, 这样有助于光生电子和空穴对的分离, 降低其复合机率, 从而提高ZnO的光催化效率.  相似文献   

13.
Photosensitive cinnamic acid conjugated glutamides were designed to demonstrate photocontrolled hierarchical chirality transfer and switching in self‐assembled systems. In methanol, the cinnamic acid derivatives self‐assembled into superhelices, which could be switched into nanokebabs upon UV irradiation. These two nanostructures showed opposite helicity. The chiral nanostructures could further convey their chirality to achiral fluorescent molecules and result in the emission of circularly polarized luminescence (CPL). Remarkably, the CPL followed the helicity of the chiral nanostructure rather than the inherent molecular chirality. Photodriven dimerization of the cinnamic moiety lead to a significant change in molecular packing and subsequent switching of the helicity of the formed nanostructures.  相似文献   

14.
Crystalline flowerlike ZnO was synthesized by an aminolytic reaction at the air-liquid interface in an aqueous media at an alkaline pH. A thin visible film was formed at the air-liquid interface by self-assembly of flowerlike ZnO. Diffraction studies show rearrangement of the single crystalline units at the air-liquid interface leading to the formation of nanobelts. These nanobelts overlap systematically to form petals of the flowerlike structure; individual petals get curved with time. Each nanobelt is found to be single crystalline and can be indexed as the hexagonal ZnO phase. The organic product formed in the aminolytic reaction and dissolution-reprecipitation mechanism is the driving force for the formation of flowerlike ZnO at the air-liquid interface. A clear relationship between the surface, photocatalytic, and photoluminescent properties of ZnO is observed. The flowerlike structure exhibits a blue shift (3.56 eV) in the band emission as compared to bulk ZnO (3.37 eV). The photodegradation of methylene blue over the flowerlike ZnO catalyst formed at the air-liquid interface and in the sediments shows enhanced photocatalytic activity. The sub-bands formed due to surface defects facilitate separation of charge carriers increasing their lifetime, leading to enhanced photocatalytic activity of flowerlike ZnO.  相似文献   

15.
以硝酸锌[Zn(NO3)2.6H2O]和尿素[CO(NH2)2]作前驱体,通过微波诱导燃烧技术可控合成具有不同形貌的ZnO纳米晶体,并用热重分析和差热分析进行了研究。对各种生长条件:微波功率,辐射时间和尿素/Zn2+物质的量的比对ZnO纳米晶体形貌的影响作了分析。结果表明:尿素/Zn2+物质的量的比对ZnO纳米材料的形貌具有显著影响。X衍射图表明合成的ZnO纳米结构呈六角形。傅里叶变换红外光谱图中400~500 cm-1处明显的峰为Zn-O的振动峰。ZnO纳米结构的发光光谱在366 nm的带边发射,因缺陷又由许多可见光发射峰组成。用扫描电子显微镜、透射电子显微镜、选区电子衍射研究了花状ZnO纳米结构的增长机理。本方法仅需几分钟就获得的了ZnO纳米结构。  相似文献   

16.
We report two novel types of hierarchically structured iodine‐doped ZnO (I? ZnO)‐based dye‐sensitized solar cells (DSCs) using indoline D205 and the ruthenium complex N719 as sensitizers. It was found that iodine doping boosts the efficiencies of D205 I? ZnO and N719 I? ZnO DSCs with an enhancement of 20.3 and 17.9 %, respectively, compared to the undoped versions. Transient absorption spectra demonstrated that iodine doping impels an increase in the decay time of I? ZnO, favoring enhanced exciton life. Mott–Schottky analysis results indicated a negative shift of the flat‐band potential (Vfb) of ZnO, caused by iodine doping, and this shift correlated with the enhancement of the open circuit voltage (Voc). To reveal the effect of iodine doping on the effective separation of e?‐h+ pairs which is responsible for cell efficiency, direct visualization of light‐induced changes in the surface potential between I? ZnO particles and dye molecules were traced by Kelvin probe force microscopy. We found that potential changes of iodine‐doped ZnO films by irradiation were above one hundred millivolts and thus significantly greater. In order to correlate enhanced cell performance with iodine doping, electrochemical impedance spectroscopy, incident‐photon‐current efficiency, and cyclic voltammetry investigations on I? ZnO cells were carried out. The results revealed several favorable features of I? ZnO cells, that is, longer electron lifetime, lower charge‐transfer resistance, stronger peak current, and extended visible light harvest, all of which serve to promote cell performance.  相似文献   

17.
Plasmonic nanomaterials possessing large‐volume, high‐density hot spots with high field enhancement are highly desirable for ultrasensitive surface‐enhanced Raman scattering (SERS) sensing. However, many as‐prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two‐step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi‐periodic cloud‐like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large‐area accessible dense hot spots. The optimized 3D‐structured SERS substrate exhibits high‐quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10?9 M. Furthermore, the as‐prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10?7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large‐area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS‐based sensors.  相似文献   

18.
《印度化学会志》2023,100(5):101006
Electrodeposition approach was used to grow the ZnSe nanostructure on indium doped tin oxide (ITO) layered glass substrate. Due to low cost and high degree of absorption, binary semiconductors made from chalcogens such as CdSe, ZnO, ZnS and ZnSe provide significant features in photovoltaic and photoelectrochemical cells. The structural and morphological properties of deposited nanostructures were examined by XRD and SEM. X-ray diffraction analysis informed about cubic structure with a preferred orientation and the calculated crystal size was approximately 75 nm. The optical properties were examined by UV–visible absorbance spectra and optical band gap was measured using Tauc plot. The deposited ZnSe nanostructure has direct band gap ∼2.52 eV at room temperature which was less than 2.82 eV which is the band gap of bulk ZnSe. Investigations also focused on additional qualities like excellent optical transmission, low electrical resistance, and good photosensitivity. Because of the presence of defect states in the deposited nanostructure, the band gap energy is smaller than that of bulk material. The current-voltage characteristics were measured in dark mode and under illumination of normal tungsten filament light and LED. There was notable change in the current for both normal light and LED in comparison to dark mode. The findings of all the characterization methodologies suggested that for the production of solar cells low cost ZnSe may be used as an alternative environment friendly Cd-free window layer.  相似文献   

19.
曹昌燕  窦智峰  刘华  宋卫国 《催化学报》2012,33(8):1334-1339
采用一种快速、无模板、低成本的微波辅助水热法在2min内制备了三维花状Co3O4.所用原料均是无机盐.前驱体浓度和尿素的逐渐水解对Co3O4形貌影响很大.制得的花状Co3O4比表面积大,且暴露了(110)高活性指数面,对CO氧化具有较高的催化活性.  相似文献   

20.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号