首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 1‐substituted 4,5‐diformyl‐[1,2,3]triazole derivatives were prepared by 1,3‐dipolar cyclo‐addition of aryl azides with acetylene dicarboxaldehyde mono‐diethylacetal. The triazoles were readily converted into 1‐substituted [1,2,3]triazolo[4,5‐d]pyridazines in good yields. The 1‐(2‐nitrophenyl)‐[1,2,3]triazolo[4,5‐d]pyridazine was found to be a useful intermediate for the generation of the novel 5H‐benzo[1,2,3]triazolo[1′,2′:1,2]triazolo[4,5‐d]pyridazin‐6‐ium inner salt ring system.  相似文献   

2.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

3.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

4.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

5.
2‐Chloro‐4‐phenyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic [1,2‐d]benzo [ 1,4]diazepin‐1 ‐one ( III a) and 2‐chloro‐4‐methyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic[1,2‐d]‐benzo[1,4]diazepin‐1‐one ( III b) were synthesized. 1‐Benzoyl‐2‐phenyl‐4‐(4′‐methoxyphenyl)[1,4]‐benzodiazepine ( II a) was formed through benzoylation of starting material 2‐phenyl‐4‐(4′‐methoxyphenyl)‐[1,4]benzodiazepine ( I a) with the inversion of seven‐member ring boat conformation. The thus formed β‐lactams should have four pairs of stereoisomers. However, only one pair of enantiomers (2S,2R,4R) and (2R,2aS,4S) was obtained. The mechanism and stereochemistry of the formation of these compounds were studied on the basis of nmr spectroscopy and further confirmed by X‐ray diffraction.  相似文献   

6.
A novel electron‐accepting unit cyclopenta[2,1‐b:3,4‐c′]dithiophene‐4‐one (CPDTO‐c′), which is an isomer of CPDTO‐b′ was developed. CPDTO‐c′ can be incorporated into the D–A backbone through 5, 7 positions. The 2 position of CPDTO‐c′ can be easily functionalized with an electron‐withdrawing chain. By copolymerizing CPDTO‐c′ with four different donor units: benzo[1,2‐b:4,5‐b′]dithiophene (BDT), dithieno[3,2‐b:2′,3′‐d]silole (DTS), carbazole, and fluorene, four new conjugated copolymers P1 – P4 were obtained. All these polymers have good solubility and low‐lying HOMO energy levels (−5.41 ∼ −5.92 eV). Among them, P1 and P2 exhibit broad absorption and narrow optical bandgaps of 1.91 and 1.72 eV, respectively. Solar cells based on P1 /PC71BM afforded a PCE up to 2.72% and a high Voc up to ∼0.9 V.  相似文献   

7.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

8.
This review describes the synthesis and photovoltaic performance of donor–acceptor (D–A) semiconducting polymers that have been reported during the last decade. 9,9‐Dialkyl‐2,7‐ fluorene, 2,7‐carbazole, cyclopenta[2,1‐b:3,4‐b′]dithiophene, dithieno[3,2‐b:2′,3′‐d]silole, dithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[1,2‐b:4,5‐b′]dithiophene, benzo[1,2 b:4,5 b′]difuran building blocks, and their D–A copolymers are described in this review. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Using ionic liquids as green media, a series of 6‐arylbenzo[4,5]imidazo[1,2‐c]quinazoline derivatives is synthesized via a reaction of 2‐(1H‐benzo[d]imidazol‐2‐yl)aniline and benzaldehydes in the air. While the intermediate products of 6‐aryl‐5,6‐dihydrobenzo[4,5]imidazo[1,2‐c]quinazolines were obtained in high yields at the same conditions under nitrogen protection.  相似文献   

10.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

11.
The reaction of thionyl chloride with the semicarbazone 2 gave 4,5‐dihydro‐6,9‐dihydroxynaphtho‐[1,2‐d][1,2,3]thiadiazole ( 3 ) instead of 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]thiadiazole ( 4 ). Selenium dioxide oxidation of compound 2 gave 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 5 ). Oxidation of compound 5 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone afforded 6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 6 ).  相似文献   

12.
Four tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[1‐R‐5‐oxo‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate] compounds, denoted class (1), are a series of conjugated buta‐1,3‐dienes substituted with a heterocyclic group. The compounds can be used as dyes and pigments due to their long‐range conjugated systems. Four structures were studied using 1H NMR, 13C NMR and mass spectroscopy, viz. with R = 2,4,6‐trimethylphenyl, (1a), R = cyclohexyl, (1b), R = tert‐butyl, (1c), and R = isopropyl, (1d). A detailed discussion is presented regarding the characteristics of the three‐dimensional structures based on NMR analysis and the X‐ray crystal structure of (1a), namely tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[5‐oxo‐1‐(2,4,6‐trimethylphenyl)‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate], C36H36N2O10. The conjugation plane and stability were also studied via quantum chemical calculations.  相似文献   

13.
A high yield one pot synthesis of 2‐(2‐hydroxyaryl)‐1H‐benzirrndazole derivatives by 2‐hydroxy aromatic aldehydes with aromatic 1,2‐diamines in the presence of manganese(III) acetate at room temperature was developed. Nine fluorescencers 2‐(2‐hydroxyaryl)‐1H‐benzirrndazoles with substituent(s) X (X = H, CH3, CH3O, Cl) and two fluorescencers 2‐(2‐hydroxyaryl)‐1H‐naphth[2,3‐d]imidazoles with substituent of H or Cl were prepared in 38–87% yield and the ultraviolet absorption and fluorescent spectra of the eleven compounds synthesized were measured in methanol. The fluorescent characteristics of the 2‐(2‐hydroxyaryl)benzimidazole derivatives prepared were investigated on the basis of excited‐state intramolecular proton transfer mechanism, Stokes' shift, quantum yield, and the relationship between fluorescent intensity and the substituents were derived.  相似文献   

14.
A novel series of thieno[2′,3′:4,5]pyrimido[1,2‐b][1,2,4,5]tetrazin‐6‐one derivatives 14 were prepared from the reaction of 3‐amino‐2‐thioxo‐1,2,3,5,6,7‐hexahydro‐4H‐cyclopenta[4,5]thieno[2,3‐d]pyrimidin‐4‐one 3 or its methylthio 4 with hydrazonoyl chlorides 9 . The mechanism of the studied reactions has been discussed and further evidence for the assigned structure of the products is based on alternative synthesis. A single crystal X‐ray analysis of compound 14e has been carried out.  相似文献   

15.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

16.
The detailed synthesis and characterization of four ruthenium(II) complexes [RuLL′(NCS)2] is reported, in which L represents a 2,2′‐bipyridine ligand functionalized at the 4,4′ positions with benzo[1,2‐b:4,5‐b′]dithiophene derivatives (BDT) and L′ is 2,2′‐bipyridine‐4,4′‐dicarboxylic acid unit (dcbpy) (NCS=isothiocyanate). The reaction conditions were adapted and optimized for the preparation of these amphiphilic complexes with a strong lipophilic character. The photovoltaic performances of these complexes were tested in TiO2 dye‐sensitized solar cell (DSSC) achieving efficiencies in the range of 3–4.5 % under simulated one sun illumination (AM1.5G).  相似文献   

17.
2,3‐Dihydro‐1,3,4‐thiadiazoles, pyrazoles, pyrazolo[3,4‐d]pyridazines, thieno[2,3‐b]pyridines, pyrim‐idino[4′,5′:4,5]thieno[2,3‐b]pyridines and pyrrolo[3,4‐d]pyrazoles were obtained in a good yields by treatment of hydrazonoyl halides with each of alkyl carbodithioates, 3‐(dimethylamino)‐1‐naphtho[1,2‐d]furan‐2‐ylprop‐2‐en‐1‐one and N‐arylmalemides.  相似文献   

18.
In contrast to target‐oriented synthesis that aims to access precise regions of chemistry, diversity‐oriented synthesis via multicomponent synthesis populates chemical space broadly with small molecules having diverse structures. This study has achieved the diversity‐oriented synthesis of novel imidazo[4′,5′:4,5]benzo[e][1,4]thiazepinones ( 4 ) and benzo[d]imidazolyl thiazolidinones ( 5 ) controlled by the nature of substitution effect of the reaction component. The one‐pot reaction of benzimidazole 1 , aromatic aldehyde 2 , and mercaptoacetic acid 3 leads to the formation of imidazo[4′,5′:4,5]benzo[e][1,4]thiazepinones ( 4 ) with electron‐donating groups as substitution on aromatic aldehyde while electron‐withdrawing substitutions produced benzo[d]imidazolyl thiazolidinones ( 5 ). The title compounds ( 4 ) and ( 5 ) were evaluated for their antimicrobial and anti‐inflammatory activities.  相似文献   

19.
2‐(1H ‐benzo[d ]imidazol‐2‐yl)anilines reacted with haloketones including 5‐chloropentan‐2‐one and 6‐chlorohexan‐2‐one catalyzed by iodine, giving benzo[4,5]imidazo[1,2‐c ]pyrrolo[1,2‐a ]quinazoline and 6H ‐benzo[4,5]imidazo[1,2‐c ]pyrido[1,2‐a ]quinazoline derivatives, respectively. This domino‐type reaction formed two new heterocycles and three new covalent bonds in one‐pot procedure and provided a green method for the synthesis of fused pentacyclic heterocycles bearing both quinazoline and benzimidazole moieties in ionic liquids.  相似文献   

20.
The synthesis of a polycyclic heterocyclic ring system compound, ethyl 7‐hydroxy‐4‐oxo‐2‐phenyl‐4,5‐dihydro‐3H‐benzo[6,7]cyclohepta[1,2‐d]pyrimidine‐6‐carboxylate was carried out by condensation of benzamidine on diethyl 5,9‐dihydroxy‐7H‐benzo[a]cycloheptene‐6,8‐dicarboxylate, after opening and then closure of the seven membered ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号