首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A couple of corrole–perylene carboximide dyads ( C2‐PIa and C2‐PIx ) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge‐separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties. High spectroscopic energy levels of the perylene carboximide derivatives (PIs) allow a fast charge separation to be maintained in competition with an energy‐transfer process from the PI to the corrole unit. Yields and lifetimes of charge separation in toluene are, respectively, 75 % and 2.5 μs for C2‐PIa and 65 % and 24 ns for C2‐PIx . The results and the effect of solvent polarity are discussed in the framework of current energy‐ and electron‐transfer theories.  相似文献   

2.
A series of arrays for light‐driven charge separation is presented, in which perylene tetracarboxylic bisimide is the light‐absorbing chromophore and electron acceptor, whereas isoxazolidines are colourless electron donors, the electron‐releasing properties of which are increased with respect to the amino group by means of the α‐effect. Charge separation (CS) in toluene over a distance ranging from ≈10 to ≈16 Å, with efficiencies of ≈95 to ≈50 % and CS lifetimes from 300 ps to 15 ns, are demonstrated. In dichloromethane the charge recombination reaction is faster than charge separation, preventing accumulation of the CS state. The effects of solvent polarity and molecular structure are discussed in the frame of current theories.  相似文献   

3.
The unprecedented dependence of final charge separation efficiency as a function of donor–acceptor interaction in covalently‐linked molecules with a rectilinear rigid oligo‐p‐xylene bridge has been observed. Optimization of the donor–acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge‐separated state to the ground state, yielding the final long‐lived, triplet charge‐separated state with circa 100 % efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.  相似文献   

4.
Excitation of the peripheral Zn porphyrin units in a noncovalent five‐porphyrin array, formed by gable‐like zinc(II) bisporphyrins and a central free‐base meso‐tetrakis(4‐pyridyl)porphyrin in a 2:1 ratio, ( ZnP2 )2? ( TPyP ), does not lead to a quantitative sensitization of the luminescence of the free‐base porphyrin acceptor, even though there is an effective energy transfer. Time resolution of the luminescence evidences a quenching of TPyP upon sensitization by the peripheral ZnP2 . The time evolution of the TPyP fluorescence in the complex can be described by a bi‐exponential fitting with a major component of 180 ps and a minor one of 5 ns, compared to an isolated TPyP lifetime of 9.4 ns. The two quenched lifetimes are shown to be correlated to the presence of 2:1 and 1:1 complexes, respectively. No quenching of TPyP fluorescence occurs in ( ZnP2 )2?( TPyP ) at 77 K in a rigid solvent for which only an energy‐transfer process (τ=150±10 ps) from peripheral ZnP2 to the central TPyP is observed. An unusual HOMO–HOMO electron‐transfer reaction from ZnP2 to the excited TPyP units, responsible for the observed phenomena, is detected. The resulting charge‐separated state, ( ZnP2 )+2?( TPyP )? is found to recombine to the ground state with a lifetime of 11 ns.  相似文献   

5.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   

6.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

7.
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.  相似文献   

8.
9.
10.
Two compounds containing a porphyrin dimer and a perylene tetracarboxylic diimide (PDI) linked by phenyl ( 1 ) or ethylene groups ( 2 ) are prepared. The photophysical properties of these two compounds are investigated by steady state electronic absorption and fluorescence spectra and lifetime measurements. The ground state absorption spectra reveal intense interactions between the porphyrin units within the porphyrin dimer, but no interactions between the porphyirn dimer and PDI. The fluorescence spectra suggest efficient energy transfer from PDI to porphyrin accompanied by less efficient electron transfer from porphyrin to PDI. The energy transfer is not affected by the dimeric structure of porphyrin or the linkage between the porphyrin dimer and PDI. However, the electron transfer from porphyrin to PDI is significantly affected by either the linkage between the donor and the acceptor or the polarity of the solvents. The dimeric structure of the porphyrin units in these compounds significantly promotes electron transfer in nonpolar, but not in polar solvents.  相似文献   

11.
Fluoroionophores of fluorophore–spacer–receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1 – 13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1 – 3 ) revealed a dominant through‐space pathway for oxidative photoinduced electron transfer (PET) in CH2‐bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4 – 9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron‐withdrawing or ‐donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (ΔGPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (Φf), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10 – 13 were synthesized.  相似文献   

12.
A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2) nanoparticles through carboxyl groups was constructed. Under solar-light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.−), which in a second step absorbs near-infrared light, forming a stable PBI dianion (PBI2−). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co-catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 μmol h−1 g−1 with simulated sunlight irradiation in neutral and basic conditions, respectively.  相似文献   

13.
Back electron transfer (BET) is one of the important processes that govern the decay of generated ion pairs in intermolecular photoinduced electron transfer reactions. Unfortunately, a detailed mechanism of BET reactions remains largely unknown in spite of their importance for the development of molecular photovoltaic structures. Here, we examine the BET reaction of pyrene (Py) and 1,4‐dicyanobenzene (DCB) in acetonitrile (ACN) by using time‐resolved near‐ and mid‐IR spectroscopy. The Py dimer radical cation (Py2.+) and DCB radical anion (DCB.?) generated after photoexcitation of Py show asynchronous decay kinetics. To account for this observation, we propose a reaction mechanism that involves electron transfer from DCB.? to the solvent and charge recombination between the resulting ACN dimer anion and Py2.+. The unique role of ACN as a charge mediator revealed herein could have implications for strategies that retard charge recombination in dye‐sensitized solar cells.  相似文献   

14.
Porphyrins have been investigated for a long time in various fields of chemistry owing to their excellent redox and optical properties. Structural isomers of porphyrins have been synthesized, namely, porphycene, hemiporphycene, and corrphycene. Although the number of studies on these structural isomers is limited, they exhibit interesting properties suitable for various applications such as photovoltaic devices, photocatalysts, and photodynamic therapy. In the present review, we summarized their photoinduced electron‐transfer processes, which are key steps of various photofunctions. Their electrochemical and photophysical properties are summarized as basic properties for the electron transfer. Furthermore, differences among these isomers in the electron‐transfer processes are clarified, and its origin has been discussed on the basis of their molecular structures.  相似文献   

15.
本文利用核磁氢谱、吸收光谱和荧光光谱证明了环双(百草枯对苯撑)(CBPQT)与双2-萘甲酸三缩四乙二醇(N-P4-N)在乙腈溶液中能够形成1:1的二元超分子给受体体系.瞬态吸收光谱的研究表明该超分子体系中光诱导电子转移的速率kCS>1.0×108s-1,电子回传的速率kCR=1.26×103s-1,光诱导电子转移所生成电荷分离态的寿命长达794μs.  相似文献   

16.
Lithium‐ion‐encapsulated [6,6]‐phenyl‐C61‐butyric acid methyl ester fullerene (Li+@PCBM) was utilized to construct supramolecules with sulfonated meso‐tetraphenylporphyrins (MTPPS4?; M=Zn, H2) in polar benzonitrile. The association constants were determined to be 1.8×105 M ?1 for ZnTPPS4?/Li+@PCBM and 6.2×104 M ?1 for H2TPPS4?/Li+@PCBM. From the electrochemical analyses, the energies of the charge‐separated (CS) states were estimated to be 0.69 eV for ZnTPPS4?/Li+@PCBM and 1.00 eV for H2TPPS4?/Li+@PCBM. Upon photoexcitation of the porphyrin moieties of MTPPS4?/Li+@PCBM, photoinduced electron transfer occurred to produce the CS states. The lifetimes of the CS states were 560 μs for ZnTPPS4?/Li+@PCBM and 450 μs for H2TPPS4?/Li+@PCBM. The spin states of the CS states were determined to be triplet by electron paramagnetic resonance spectroscopy measurements at 4 K. The reorganization energies (λ) and electronic coupling term (V) for back electron transfer (BET) were determined from the temperature dependence of kBET to be λ=0.36 eV and V=8.5×10?3 cm?1 for ZnTPPS4?/Li+@PCBM and λ=0.62 eV and V=7.9×10?3 cm?1 for H2TPPS4?/Li+@PCBM based on the Marcus theory of nonadiabatic electron transfer. Such small V values are the result of a small orbital interaction between the MTPPS4? and Li+@PCBM moieties. These small V values and spin‐forbidden charge recombination afford a long‐lived CS state.  相似文献   

17.
电子给受体复合物中电荷转移吸收光谱和溶剂效应   总被引:5,自引:0,他引:5  
用MP2/6-31G**方法研究了二氯甲烷溶剂分子与电子给体、受体以及电子给受体复合物间的相互作用,结果表明,二氯甲烷与电子受体和电子给受体复合物间有弱氢键相互作用.利用CIS/6-31++G**方法研究了溶剂与溶质分子间形成氢键对激发态的影响.自然键电荷分析表明,电子给受体复合物的S0→S1跃迁导致一个电子从电子给体转移到受体.结合非平衡溶剂化处理和自洽反应场方法研究了溶剂分子与复合物间形成氢键时的电荷转移吸收光谱.计算表明氢键作用导致复合物的电荷转移吸收光谱蓝移.  相似文献   

18.
A new series of self‐assembled supramolecular donor–acceptor conjugates capable of wide‐band capture, and exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques as artificial photosynthetic mimics. The donor host systems comprise of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) containing a crown ether entity at the meso‐position and two styryl entities on the pyrrole rings. The styryl end groups also carried additional donor (triphenylamine or phenothiazine) entities. The acceptor host system was a fulleropyrrolidine comprised of an ethylammonium cation. Owing to the presence of extended conjugation and multiple chromophore entities, the BODIPY host revealed absorbance and emission well into the near‐IR region covering the 300–850 nm spectral range. The donor–acceptor conjugates formed by crown ether–alkyl ammonium cation binding of the host–guest system was characterized by optical absorbance and emission, computational, and electrochemical techniques. Experimentally determined binding constants were in the range of 1–2×105 M ?1. An energy‐level diagram to visualize different photochemical events was established using redox, computational, absorbance, and emission data. Spectral evidence for the occurrence of photoinduced charge separation in these conjugates was established from femtosecond transient absorption studies. The measured rates indicated ultrafast charge separation and relatively slow charge recombination revealing their usefulness in light‐energy harvesting and optoelectronic device applications. The bis(donor styryl)BODIPY‐derived conjugates populated their triplet excited states during charge recombination.  相似文献   

19.
Donor–bridge–acceptor triad (Por‐2TV‐C60) and tetrad molecules ((Por)2‐2TV‐C60), which incorporated C60 and one or two porphyrin molecules that were covalently linked through a phenylethynyl‐oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto‐ and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C60 moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C60 moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C60. Then, back‐electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)‐2TV‐C60 and (Por)2‐2TV‐C60 acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C60.  相似文献   

20.
Photoinduced electron transfer process is a crucial step in photooxidation to obtain synthetic chemicals. However, the driving forces of electron transfer as priority in all have been rarely studied in stepwise detail. Herein, we report a series of BODIPY derivatives with an emphasis on the intramolecular charge transfer, enhancing the key step of photoinduced electron transfer process and photooxidation performances. A series of novel BODIPY photosensitizers ( B‐1 – B‐5 ) were prepared, wherein diethylamine amino of B‐3 as charge injection group was conjugated to the 2,6‐diiodo‐styryl‐BODIPY, and the electron transfer impetus was enhanced 1.6 times due to its more negative redox potentials. These results were also confirmed by the DFT/TDDFT calculation. Without pure oxygen, B‐3 still can exhibit an exceptional performance in photoxidative aromatization of 1,4‐DHP under mild condition. After irradiation for 28 min, the conversion rate came to 98.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号