首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aptamer structure and immobilization platform on the efficiency of thrombin binding and its detection using electrochemical impedance spectroscopy (EIS) characteristics was investigated with aptasensors based on glassy carbon electrodes covered with multiwalled carbon nanotubes (MWNTs). Aptamers with one or two binding sequences GGTTGGTGTGGTTGG specific for thrombin and poly(dA) and poly(dT) tags able to form dimeric products (aptabodies) were used to establish significance of steric and electrostatic factors in aptasensor performance. We have shown that electropolymerization of methylene blue onto MWNTs significantly improved electrochemical characteristics and sensitivity of thrombin detection against bare MWNTs. Charge transfer resistance and capacitance of the surface layer were measured in the presence of redox probe [Fe(CN)6]3?/4?. Aptasensors make it possible to detect thrombin in the concentration range 1 nM–1 µM with the limit of detection of 0.7 nM (monitoring resistance changes) and 0.5 nM (capacitance changes), respectively.  相似文献   

2.
The impedimetric aptasensor for Thrombin (THR) was developed for the first time herein by measuring changes at the charge‐transfer resistance, Rct upon to protein? aptamer complex formation. After covalent activation of pencil graphite electrode (PGE) surface using covalent agents, amino linked aptamer (APT) was immobilized onto activated PGE surface. Then APT‐THR interaction was explored by electrochemical impedance spectroscopy (EIS). After the optimization of experimental conditions (e.g., APT and THR concentration, immobilization and interaction times), the selectivity of impedimetric aptasensor was tested in the presence of other biomolecules: factor Va and bovine serum albumine (BSA) both in buffer media, or in diluted fetal bovine serum (FBS).  相似文献   

3.
Microfabricated microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) were coated with poly(hydroxyethylmethacrylate)‐based hydrogel membranes and studied by electrochemical impedance spectroscopy (EIS) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). Equivalent circuit modeling showed an approximate three‐fold increase in solution resistance, Rsol, and an order of magnitude increase in charge transfer resistance, Rct, resulting from a reduction in apparent diffusivity of FcCO2H. Additionally, both resistive parameters decreased while the capacitance (Q) increased with decreasing microdisk diameter; consistent with an increase in effective electroactive area. The hydrogel layer did not compromise enhanced mass transport achieved by the MDEA and thus may be used to advantage in biosensors.  相似文献   

4.
采用石墨烯(RGO)作载体,凝血酶适体(TBA)作探针,凝血酶为目标蛋白,电化学阻抗谱(EIS)为检测技术,建立了检测蛋白质的新方法。由于RGO可增大电极有效表面积并提高电极表面电子传输速率以及TBA的特异性识别能力,此方法具有较高的灵敏度和良好的选择性。采用本方法检测凝血酶的线性范围为0.3~10 fmol/L,检出限为0.26 fmol/L。本研究将RGO应用于电化学适体传感器,证实了RGO修饰电极在电化学适体传感器领域中潜在的应用价值。  相似文献   

5.
An electrochemical aptasensor was developed for sensitive and specific detection of thrombin by combining homogenous recognition strategy and gold nanoparticles (AuNPs) amplification. Streptavidin‐alkaline phosphatase was used as reporter molecule. Compared with the traditional hairpin aptasensor monitoring the distance of the redox molecule from the electrode surface, the proposed aptasensor successfully overcome the limitations of distance and improved the stability and high affinity of the aptamer hairpin through homogenous recognition, which enhanced the sensitivity and selectivity of the sensors effectively. Additionally, AuNPs were employed to increase the active area and conductivity of the electrode, thus, improving the sensitivity of the aptasensor. As a result, the designed thrombin detection sensor obtained a lower detection limit of 0.52 pM in buffer and 6.9 pM in blood serum.  相似文献   

6.
We developed an electrochemical thrombin aptasensor based on ZnO nanorods functionalized by electrostatically adsorption of 30‐mer DNA aptamers. The sensor surface was characterized by AFM and SEM. The surface layer assembling was optimized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with ferricyanide ions as redox markers. The peak current of the ferricyanide and the charge transfer resistance gradually decreased with increasing concentration of thrombin in the range from 3 pM to 100 nM due to formation of aptamer‐thrombin complexes and slower diffusion of the marker ions through the surface layer. At optimal conditions, a limit of detection (LOD) of 3 pM for EIS measurements and 10 pM for CV response was calculated from the S/N=3.  相似文献   

7.
Electropolymerization is often used as a tool for immobilization of charged biopolymers and their electric wiring in the biosensor assembly. In this work, electropolymerization of proflavine has been for the first time used for the physical adsorption of DNA and measurement of anthracycline drugs (doxorubicin and daunorubicin) able to intercalate DNA. Redox properties of the proflavine polymers on the glassy carbon electrode and DNA deposition were characterized with cyclic voltammetry, scanning electron microscopy and electrochemical impedance spectroscopy. It was shown that DNA decreased the peak currents on voltammogram but increased the charge transfer resistance. The latter effect is pronounced with the following drug application. The impedimetric response regularly increased with the drugs concentration in the range 1 nM to 0.1 μM for doxorubicin and 1 pM–10 nM for daunorubicin (limit of detections 0.3 and 0.001 nM, respectively). The biosensor was tested on pharmaceutical preparations and spiked solution simulating the plasma electrolytes and possible interference of serum proteins.  相似文献   

8.
In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si3N4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si3N4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO2/Si3N4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10−13–10−7 M were detected, showing a sensitivity of 0.128 Ω μM−1 and a limit of detection of 10−14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.  相似文献   

9.
在玻碳电极(GCE)表面首先用增敏作用的多壁碳纳米管(MWCNTs)夹心于两层电沉积的铁氰化镍(NiHCF)氧化还原电化学探针之间,然后以金纳米粒子为固定核酸适配体的载体,构建了检测凝血酶的非标记型核酸适配体生物传感器。 利用扫描电子显微镜(SEM)对MWCNTs和NiHCF的形貌进行了表征。 利用电化学阻抗谱对传感器的组装过程进行了监测,用循环伏安法(CV)和差分脉冲伏安法(DPV)对传感器的电化学行为进行了研究。 以铁氰化镍为探针的传感器对凝血酶的检测在1.0 ng/L~1.0 mg/L范围内呈良好的线性关系,相关系数为0.998,检测限为0.2 ng/L(S/N=3)。  相似文献   

10.
In this work, we report on the preparation of a simple, sensitive DNA impedance sensor. Firstly gold nanoparticles were electrodeposited on the surface of a gold electrode, and then probe DNA was immobilized on the surface of gold nanoparticles through a 5′‐thiol‐linker. Electrochemical impedance spectroscopy (EIS) was used to investigate probe DNA immobilization and hybridization. Compared to the bare gold electrode, the gold nanoparticles modified electrode could improve the density of probe DNA attachment and the sensitivity of DNA sensor greatly. The difference of electron transfer resistance (ΔRet) was linear with the logarithm of complementary oligonucleotides sequence concentrations in the range of 2.0×10?12 to 9.0×10?8 M, and the detection limit was 6.7×10?13 M. In addition, the DNA sensor showed a fairly good reproducibility and stability during repeated regeneration and hybridization cycles.  相似文献   

11.
A simple and highly sensitive electrochemical impedance spectroscopy (EIS) biosensor based on nano‐MnO2 as a platform for the immobilization of the aptamer was developed for the determination of adenosine. In the measurement of adenosine, the change in interfacial electron transfer resistance (Ret) of the biosensor using a redox couple of [Fe(CN)6]3?/4? as the probe was monitored. The change of the electron transfer resistance (ΔRet) of the biosensor was linear with the concentration of adenosine in the range from 1.0 nM to 100 nM. The fabricated sensor was shown to exhibit high sensitivity, desirable selectivity and good stability.  相似文献   

12.
This paper demonstrates the effectiveness of using the redox couple to investigate DNA monolayers, and compares the potential advantages of this system to the standard redox couple. B-DNA monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn2+ at pH 8.6 and studied by cyclic voltammetry (CV), impedance spectroscopy (IS) and chronoamperometry (CA) with . Compared to B-DNA, M-DNA showed significant changes in CV, IS and CA spectra. However, only small changes were observed when the monolayers were incubated in Mg2+ at pH 8.6 or in Zn2+ at pH 6.0. The heterorgeneous electron-transfer rate (kET) between the redox probe and the surface of a bare gold electrode was determined to be 5.7 × 10−3 cm/s. For a B-DNA modified electrode, the kET through the monolayer was too slow to be measured. However, under M-DNA conditions, a kET of 1.5 × 10−3 cm/s was reached. As well, the percent change in resistance to charge transfer, measured by IS, was used to illustrate the dependence of M-DNA formation on pH. This result is consistent with Zn2+ ions replacing the imino protons on thymine and guanine residues. The redox couple was also effective in differentiating between single-stranded and double-stranded DNA during de-hybridization and rehybridization experiments.  相似文献   

13.
《Electroanalysis》2005,17(20):1878-1885
The advantages and limitations of impedimetric sensors based on Ti/TiO2 architectures are described. Titanium dioxide (titania) was potentiostatically formed onto titanium electrodes of 2 mm diameter, at 10 and 30 V in 1 M H2SO4. The thickness of the titania layers was ellipsometrically determined to be 30 and 86 nm respectively and they are highly insulating with charge‐transfer resistances in the MΩ range, as they were measured with electrochemical impedance spectroscopy under specific experimental conditions. Low voltage anodization (<10 V) results to amorphous TiO2, whereas at higher applied voltages (>25 V), anatase is the predominant form. SEM images are indicative of quite smooth, compact coatings without any severe cracks.  相似文献   

14.
A DNA‐based biosensor was reported for detection of silver ions (Ag+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]4?/3? as redox probe and hybridization chain reaction (HCR) induced hemin/G‐quadruplex nanowire as enhanced label. In the present of target Ag+, Ag+ interacted with cytosine‐cytosine (C? C) mismatch to form the stable C? Ag+? C complex with the aim of immobilizing the primer DNA on electrode, which thus triggered the HCR to form inert hemin/G‐quadruplex nanowire with an amplified EIS signal. As a result, the DNA biosensor showed a high sensitivity with the concentration range spanning from 0.1 nM to 100 µM and a detection limit of 0.05 nM.  相似文献   

15.
Novel electrochemical aptasensors based on glassy carbon electrodes modified with electropolymerized Neutral red and polycarboxylated macrocyclic ligands onto which the DNA aptamers were covalently attached have been developed for detection of Aflatoxin B1 (AFB1). The interaction with an analyte resulted in the decrease of the cathodic peak current of the probe measured by CV and in the increase of the electron transfer resistance determined by EIS. The limit of detection was found to be 0.1 nM for CV and 0.05 nM for EIS methods, respectively. The aptasensor makes it possible to detect AFB1 in peanuts, cashew nuts, white wine and soy sauce with a recovery of 85–100 %.  相似文献   

16.
《Electroanalysis》2018,30(3):486-496
Aptasensor for highly sensitive determination of aflatoxin M1 (AFM1) was developed on the base of glassy carbon electrode (GCE) covered with polymeric Neutral red (NR) dye obtained by electropolymerization in the presence of polycarboxylated pillar[5]arene derivative. Aptamer against AFM1 and NR label were then covalently linked to the carboxylic groups of the carrier by carbodiimide binding. At presence of AFM1 the cathodic peak current related to the NR conversion decreases. AFM1 induced also an increase of the charge transfer resistance measured by electrochemical impedance spectroscopy. In optimal conditions, this make it possible to determine from 5 to 120 ng/L AFM1 in standard solutions with limit of detection (LOD) of 0.5 ng/L. The aptasensor was validated on the spiked samples of cow and sheep milk as well as in kefir after their methanol dilution. Reliable detection of the 40–160 ng/kg of mycotoxins was reached. This is below limited threshold value (50 μg/kg) established in EC.  相似文献   

17.
The fabrication of a thermolysin-based biosensor capable of detecting ochratoxin A (OTA) from food samples is described. The electrochemical deposition of calcium cross-linked cellulose film (CCLC) and gold nanoparticles (AuNPs) on graphene (GR) for modification of a glassy carbon electrode (GCE) is the first step. Then the thermolysin (TLN) enzyme in a polyvinyl alcohol (PVA)/polyethylenimine (PEI) matrix is immobilized. The impedimetric biosensor response is linear from 0.2 nM to 100 nM with a detection limit of 0.2 nM. The obtained stable and reproducible biosensor is then applied for the detection of OTA in spiked extracts from coffee beans.  相似文献   

18.
A gold surface modified with a self‐assembled monolayer of 11‐amino‐1‐undecanethiol (AUT) was used for the covalent immobilization of oxidized single‐walled carbon nanotubes (SWNTs). The as‐described SWNTs‐modified substrate was subsequently used to attach single‐stranded deoxyribonucleic acid (ssDNA) used as a substrate for DNA hybridization. Electrochemical impedance spectroscopy measurements were performed to follow the DNA hybridization process by using the redox couple [Fe(CN)6]3−/4− as a marker ion. Specifically, changes in charge transfer resistance obtained from the Nyquist plots were used as the sensing parameter of DNA hybridization. The substrate sensitivity towards changes in target DNA concentration, its selectivity toward different DNA sequences and its reusability are successfully demonstrated in this report.  相似文献   

19.
The mycotoxin zearalenone (ZEA) prompts reproductive toxicity due to its strong estrogenic effects. In this work, an electrochemical sensor for determination of ZEA was developed by electropolymerization of a molecularly imprinted poly (o‐phenylenediamine) (PPD) film on screen‐printed gold electrode (SPGE) surface. The sensor was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using K3[Fe(CN)6]/K4[Fe(CN)6] as redox probe. The molecularly imprinted polymer (MIP) sensor showed a wide determination range from 2.50 to 200.00 ngmL?1 for ZEA. The Limit of detection (LOD) was calculated to be 0.20 ngmL?1, based on the signal to noise (S/N) ratio equal to 3.0. The sensor displayed good repeatability, with RSD values≤4.6 %, and maintained 93.2 % of its initial response after storage for 10 days in air at room temperature. The developed method was successfully applied for the determination of ZEA in corn flakes with mean recoveries ranged from 96.2 % to 103.8 % and RSDs within the interval of 2.1 % to 3.8 %.  相似文献   

20.
Mycotoxins are highly toxic metabolites of some fungi that frequently contaminate water, food and feed and hence cause several human and animal diseases. In this work, a new approach to the fast and reliable determination of aflatoxin M1 (AFM1) in water and milk has been proposed with reagent free protocol of signal measurement. For this purpose, DNA aptamer selective to AFM1 was entrapped between two thin layers of polyaniline (PANI) electrodeposited on glassy carbon electrode. The incubation of the aptasensor in the AFM1 solution results in remarkable decrease of the PANI intrinsic activity monitored by direct current voltammetry or electrochemical impedance spectroscopy. Appropriate calibration curves were linear in the range from 3 to 90 ng/L with limit of detection (LOD) 1–5 ng/L depending on the measurement mode. Mechanism of signal generation involves shielding electrostatic interactions between the PANI and aptamer in the surface layer and variation of its redox activity attributed to the emeraldine form of PANI. Selectivity of the response was proved by similar experiments with aflatoxin B1 and ochratoxin A and by comparison of the results with those obtained with non‐specific aptamer in the sensing layer. Simple protocol for milk pretreatment has been proposed for reliable detection of AFM1 on the level of its threshold limited values (20 ng/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号