首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transition metal cations Co2+, Ni2+ and Zn2+ form 1 : 1 : 1 ternary complexes with 2,2′‐bipyridine (bpy) and peptides in aqueous methanol solutions that have been studied for tripeptides GGG and GGL. Electrospray ionization of these solutions produced singly charged [Metal(bpy)(peptide ? H)]+ and doubly charged [Metal(bpy)(peptide)]2+ ions (Metal = metal ion) that underwent charge reduction by glancing collisions with Cs atoms at 50 and 100 keV collision energies. Electron transfer to [Metal(bpy)(peptide)]2+ ions was less than 4.2 eV exoergic and formed abundant fractions of non‐dissociated charge‐reduced intermediates. Charge‐reduced [Metal(bpy)(peptide)]+ ions dissociated by the loss of a hydrogen atom, ammonia, water and ligands that depended on the metal ion. The Ni and Co complexes mainly dissociated by the elimination of ammonia, water, and the peptide ligand. The Zn complex dissociated by the elimination of ammonia and bpy. A sequence‐specific fragment was observed only for the Co complex. Electron transfer to [Metal(bpy)(peptide ? H)]+ was 0.6–1.6 eV exoergic and formed intermediate radicals that were detected as stable anions after a second electron transfer from Cs. [Metal(bpy)(peptide ? H)] neutrals and their anions dissociated by the loss of bpy and peptide ligands with branching ratios that depended on the metal ion. Optimized structures for several spin states, electron transfer and dissociation energies were addressed by combined density functional theory and Møller–Plesset perturbational calculations to aid interpretation of experimental data. The experimentally observed ligand loss and backbone cleavage in charge‐reduced [Metal(bpy)(peptide)]+ complexes correlated with the dissociation energies at the present level of theory. The ligand loss in +CR? spectra showed overlap of dissociations in charge‐reduced [Metal(bpy)(peptide ? H)] complexes and their anionic counterparts which complicated spectra interpretation and correlation with calculated dissociation energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Ali OY  Fridgen TD 《Chemphyschem》2012,13(2):588-596
Complexes of copper (II) ions and uracil were studied using tandem mass spectrometry (Fourier transform ion cyclotron resonance, FTICR, mass spectrometry) including extensive isotopic labeling as well as theoretical calculations. Positive ion electrospray mass spectra of aqueous solutions of CuCl(2) and uracil show that the [Cu(Ura-H)(Ura)](+) ion is the most abundant ion even at low concentrations of uracil. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments show that the lowest energy decomposition pathway for [Cu(Ura-H)(Ura)](+) , surprisingly, is not the loss of uracil, but the loss of HNCO followed by HCN as the most abundant secondary fragmentation product. MS(n) studies identified primary, secondary and tertiary fragmentation products. Extensive isotopic labeling studies, as well as computational studies allowed for a detailed fragmentation scheme for the [Cu(Ura-H)(Ura)](+) ion, beginning with the lowest energy structure.  相似文献   

3.
The structures of the [M(18C6)]2+ cations (M = Ba, Sr, Pb, Cd, Mn) and their salts [M(18C6)](HFA)2 and [M(18C6)](NO3)2 have been calculated by the density functional theory method (in the B3LYP/6-311++G** + LanL2Dz approximation). Upon geometry optimization, the gas-phase structures of compounds of different composition have been calculated; for them, the strength of binding of the central cation to the crown ether (18C6) and the degree of structural similarity have been evaluated. The structure of the [NH4(18C6)]+ cation identified in a practical synthesis has also been considered. For metal cations acting as a central atom, NH 4 + and [M(18C6)]2+ complex cations, as well as for intermediate and ultimate products [M(18C6)](NO3)2 and [M(18C6)](HFA)2 (M = Ba, Sr, Pb, Cd, Mn), the electronic chemical potential and Pearson hardness, which enables the consideration of the propensity of various reagents to interact with each other in terms of the empirical HSAB principle (hard with hard and soft with soft), have been evaluated. Comparison of the estimates with the properties of the synthesized compounds with M = Ba, Sr, and Pb makes it possible to preliminarily verify the applicability of this principle to the systems under consideration and predict some properties of isostructural analogues important in the search for methods of synthesis of [M(18C6)](HFA)2, where M = Cd and Mn. The possibility of establishing a correlation between the electron density of the system, stability, and hydrolytic activity of complexes has been shown.  相似文献   

4.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

5.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

6.
Two series of heavy alkaline earth metal pyrazolates, [M(Ph(2)pz)(2)(thf)(4)] 1 a-c (Ph(2)pz=3,5-diphenylpyrazolate, M=Ca, Sr, Ba; THF=tetrahydrofuran) and [M(Ph(2)pz)(2)(dme)(n)] (M=Ca, 2 a, Sr, 2 b, n=2; M=Ba, 2 c, n=3; DME=1,2-dimethoxyethane) have been prepared by redox transmetallation/ligand exchange utilizing Hg(C(6)F(5))(2). Compounds 1 a and 2 b were also obtained by redox transmetallation with Tl(Ph(2)pz). Alternatively, direct reaction of the alkaline earth metals with 3,5-diphenylpyrazole at elevated temperatures under solventless conditions yielded compounds 1 a-c and 2 a-c upon extraction with THF or DME. By contrast, [M(Me(2)pz)(2)(Me(2)pzH)(4)] 3 a-c (M=Ca, Sr, Ba; Me(2)pzH=3,5-dimethylpyrazole) were prepared by protolysis of [M[N(SiMe(3))(2)](2)(thf)(2)] (M=Ca, Sr, Ba) with Me(2)pzH in THF and by direct metallation with Me(2)pzH in liquid NH(3)/THF. Compounds 1 a-c and 2 a-c display eta(2)-bonded pyrazolate ligands, while 3 a,b exhibit eta(1)-coordination. Complexes 1 a-c have transoid Ph(2)pz ligands and an overall coordination number of eight with a switch from mutually coplanar Ph(2)pz ligands in 1 a,b to perpendicular in 1 c. In eight coordinate 2 a,b the pyrazolate ligands are cisoid, whilst 2 c has an additional DME ligand and a metal coordination number of ten. By contrast, 3 a,b have octahedral geometry with four eta(1)-Me(2)pzH donors, which are hydrogen-bonded to the uncoordinated nitrogen atoms of the two trans Me(2)pz ligands. The application of synthetic routes initially developed for the preparation of lanthanoid pyrazolates provides detailed insight into the similarities and differences between the two groups of metals and structures of their complexes.  相似文献   

7.
Zhang  Y.  Li  L.-L.  Feng  S.-S.  Feng  T.  Dong  W.-K. 《Russian Journal of General Chemistry》2021,91(10):2069-2078
Russian Journal of General Chemistry - Two new phenoxo-bridged heterobimetallic [Zn(II)2M(II)] (M = Sr and Ba) salamo-based complexes, [{Zn(L)(μ2-OAc)}2Sr]·0.33CH3OH·H2O (1) and...  相似文献   

8.
The alkaline-earth metal complexes [M(Pta)2(15C5)] (M = Ca, Sr, and Ba; Pta is the 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate anion; 15C5 is 15-crown-5) were obtained from PtaH and 15C5 in toluene. The complexes were characterized by IR and 1H NMR spectra and TGA data. The structures of [Ca(Pta)2(15C5)] and [Ba(Pta)2(15C5)] were confirmed by X-ray diffraction analysis. The volatility and thermal stability decrease in the order [Ca(Pta)2(15C5)] > [Sr(Pta)2(15C5)] > [Ba(Pta)2(15C5)].  相似文献   

9.
Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI‐FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in‐source ion trap collision‐induced dissociation (CID) of the protonated molecules, [M+H]+. A retro‐Diels‐Alder (RDA) process along with ring‐contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH3NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO2 or CO. The uracil derivatives showed a loss of a ketene unit (CH2CO, 42 Da) from the protonated molecule along with the loss of H2O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N‐acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Twelve complexes 1-12 of general category [M(ligand)(anion)(x)(water)(y)], where ligand = N,N,N',N'-tetrakis(2-hydroxypropyl/ethyl)ethylenediamine (HPEN/HEEN), anion = anions of picric acid (PIC), 3,5-dinitrobenzoic acid (DNB), 2,4-dinitrophenol (DNP), and o-nitrobenzoic acid (ONB), M = Ca(2+), Sr(2+), Ba(2+), or Na(+), x = 1 and 2, and y = 0-4, were synthesized. All of these complexes were characterized by elemental analysis, IR, (1)H and (13)C NMR, and thermal studies. X-ray crystal studies of these complexes 1-12, [Ca(HPEN)(H(2)O)(2)](PIC)(2).H(2)O (1), [Ca(HEEN)(PIC)](PIC) (2), Ba(HPEN)(PIC)(2) (3), [Na(HPEN)(PIC)](2) (4), Ca(HPEN)(H(2)O)(2)](DNB)(2).H(2)O (5),Ca(HEEN)(H(2)O)](DNB)(2).H(2)O (6), [Sr(HPEN)(H(2)O)(3)](DNB)(2) (7), [Ba(HPEN)(H(2)O)(2)](DNB)(2).H(2)O](2) (8), [[Ba(HEEN)(H(2)O)(2)](ONB)(2)](2) (9), [[Sr(HPEN)(H(2)O)(2)](DNP)(2)](2) (10), [[Ba(HPEN)(H(2)O)(2)](DNP)(2)](2) (11), and [Ca(HEEN)(DNP)](DNP) (H(2)O) (12), have been carried out at room temperature. Factors which influence the stability and the type of complex formed have been recognized as H-bonding interactions, presence/absence of solvent, nature of the anion, and nature of the cation. Both the ligands coordinate the metal ion through all the six available donor atoms. The complexes 1 and 5-11 have water molecules in the coordination sphere, and their crystal structures show that water is playing a dual character. It coordinates to the metal ion on one hand and strongly hydrogen bonds to the anion on the other. These strong hydrogen bonds stabilize the anion and decrease the cation-anion interactions by many times to an extent that the anions are completely excluded out of the coordination sphere and produce totally charge-separated complexes. In the absence of water molecules as in 2 and 3 the number of hydrogen bonds is reduced considerably. In both the complexes the anions case interact more strongly with the metal ion to give rise to a partially charge-separated 2 or tightly ion-paired 3 complex. High charge density Ca(2+) forms only monomeric complexes. It has more affinity toward stronger nucleophiles such as DNP and PIC with which it gives partially charge-separated eight-coordinated complexes. But with relatively weaker nucleophile like DNB, water replaces the anion and produces a seven coordinated totally charge-separated complex. Sr(2+) with lesser charge/radius ratio forms only charge-separated monomeric as well as dimeric complexes. Higher coordination number of Sr(2+) is achieved with coordinated water molecules which may be bridging or nonbridging in nature. All charge-separated complexes of the largest Ba(2+) are dimeric with bridging water molecules. Only one monomeric ion-paired complex was obtained with Ba(PIC)(2). Na(+) forms a unique dinuclear cryptand-like complex with HPEN behaving as a heptadentate chelating-cum-bridging ligand.  相似文献   

11.
The divalent complexes [M(ttfpz)(2)(thf)(4)] (ttfpz = 3-(2'-thienyl)-5-(trifluoromethyl)pyrazolate; M = Yb, 1, Ca, 2, Sr, 3, Ba, 4; thf = tetrahydrofuran) and [M(ttfpz)(2)(dme)(n)] (M = Ca, 5, Sr, 6, Yb, 7, n = 2; M = Ba, 8, n = 3; dme = 1,2-dimethoxyethane) have been prepared by redox transmetallation/protolysis reactions employing the free metals, Hg(C(6)F(5))(2) and ttfpzH in donor solvents and their structures determined. The monomeric structures exhibit η(2)-bound pyrazolate ligands with eight-coordinate metal atoms for complexes 1-7 and a ten-coordinate metal for 8. The pyrazolate ligands in the thf-complexes 1-4 as well as dme-derivatives 5 and 6 are in a transoid configuration, whilst in complex 7 the ttfpz ligands exhibit a cisoid relationship. In 8 the ligands have an intermediate role in between cisoid and transoid.  相似文献   

12.
High‐level electronic structure calculations, in combination with Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometric studies, permit the mechanism by which closed‐shell, “naked” [TaO2]+ brings about C?H bond activation of methane to be revealed. These studies also help to understand why the lighter congeners of [MO2]+ (M=V, Nb) are unreactive under ambient conditions.  相似文献   

13.
The electron-impact-induced mass spectra of 1,3-dioxolane (la), 1,3-dithiolane (2a) and 1,3-oxatbiolane (3a) and their 2-methyl (1b–3b) and 2,2-dimethyl [(CH3)2: 1c–3c or (CD3)2: 1d–3d] derivatives have been studied in detail to gain further insight into their ion structures and competing reaction pathways with low-resolution, high-resolution, metastable and collision-induced dissociation (CID) techniques. For compounds 1a–1d the most significant reaction is loss of H˙ and CH3˙ by α-cleavage and a subsequent formation of CHO+ and C2H3O+ ions. The [M ? H]+ ions from 1a and 1b give a C2H3O+ ion which does not have the acyl cation structure as shown by their CID spectra. In compounds 3a–3d the sulphur-containing ions predominate, the C2H3O+ now having the acyl cation structure. 1,3-Dithiolanes (2a–2d) exhibit the most complicated fragmentation patterns. Furthermore the [M ? H]+ ion from 2a and [M ? CH3]+ ion from 2b have different structures as well as the [M ? H]+ ion from 2b and [M ? CH3]+ ion from 2c, as shown by their CID spectra. This can be utilized to explain why 3a–3c and 2a give principally a thiiranyl cation, whereas 2b gives a mixture of this and the thioacyl cation and 2c practically only the open-chain thioacetyl cation.  相似文献   

14.
The alkaline earth metals (M=Mg, Ca, Sr, and Ba) exhibit a +2 oxidation state in nearly all known stable compounds, but MI dimeric complexes with M−M bonding, [M2(en)2]2+, (en=ethylenediamine) of all these metals can be stabilized within the galleries of donor-type graphite intercalation compounds (GICs). These metals can also form GICs with more conventional metal (II) ion complexes, [M(en)2]2+. Here, the facile interconversion between dimeric-MI and monomeric-MII intercalates upon the addition/removal of en are reported. Thermogravimetry, powder X-ray diffraction, and pair distribution function analysis of total scattering data support the presence of either [M2(en)2]2+ or [M(en)2]2+ guests. This phase conversion requires coupling graphene and metal redox centers, with associated reversible M−M bond formation within graphene galleries. This chemistry allows the facile isolation of unusual oxidation states, reveals M0→M2+ reaction pathways, and present new opportunities in the design of hybrid conversion/intercalation materials for applications such as charge storage.  相似文献   

15.
Complexes of Mn2+ with deprotonated GlyGly are investigated by sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID), infrared multiple‐photon dissociation spectroscopy, ion–molecule reactions, and computational methods. Singly [Mnn(GlyGly‐H)2n?1]+ and doubly [Mnn+1(GlyGly‐H)2n]2+ charged clusters are formed from aqueous solutions of MnCl2 and GlyGly by electrospray ionization. The most intense ion produced was the singly charged [M2(GlyGly‐H)3]+ cluster. Singly charged clusters show extensive fragmentations of small neutral molecules such as water and carbon dioxide as well as dissociation pathways related to the loss of NH2CHCO and GlyGly. For the doubly charged clusters, however, loss of GlyGly is observed as the main dissociation pathway. Structure elucidation of [Mn3(GlyGly‐H)4]2+ clusters has also been done by IRMPD spectroscopy as well as DFT calculations. It is shown that the lowest energy structure of the [Mn3(GlyGly‐H)4]2+ cluster is deprotonated at all carboxylic acid groups and metal ions are coordinated with carbonyl oxygen atoms, and that all amine nitrogen atoms are hydrogen bonded to the amide hydrogen. A comparison of the calculated high‐spin (sextet) and low‐spin (quartet) state structures of [Mn3(GlyGly‐H)4]2+ is provided. IRMPD spectroscopic results are in agreement with the lowest energy high‐spin structure computed. Also, the gas‐phase reactivity of these complexes towards neutral CO and water was investigated. The parent complexes did not add any water or CO, presumably due to saturation at the metal cation. However, once some of the ligand was removed via CO2 laser IRMPD, water was seen to add to the complex. These results are consistent with high‐spin Mn2+ complexes.  相似文献   

16.
High valent metal(IV)‐oxo species, [M(?O)(MeIm)n(OAc)]+ (M = Mn–Ni, MeIm = 1‐methylimidazole, n = 1–2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas‐phase reactions of the metal(II) precursor ions [M(MeIm)n(OAc)]+ (M = Mn–Zn, n = 1–3) with ozone. The precursor ions [M(MeIm)(OAc)]+ and [M(MeIm)2(OAc)]+ were generated via collision‐induced dissociation of the corresponding [M(MeIm)3(OAc)]+ ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The ion–molecule reactions of dimethyl ether with cyclometalated [Pt(bipy?H)]+ were investigated in gas‐phase experiments, complemented by DFT methods, and compared with the previously reported ion–molecule reactions with its sulfur analogue. The initial step corresponds in both cases to a platinum‐mediated transfer of a hydrogen atom from the ether to the (bipy?H) ligand, and three‐membered oxygen‐ and sulfur‐containing metallacycles serve as key intermediates. Oxidative C? C bond coupling (“dehydrosulfurization”), which dominates the gas‐phase ion chemistry of the [Pt(bipy?H)]+ ion with dimethyl sulfide, is practically absent for dimethyl ether. The competition in the formation of C2H4 and CH2X (X=O, S) in the reactions of [Pt(bipy?H)]+ with (CH3)2X (X=O, S) as well as the extensive H/D exchange observed in the [Pt(bipy?H)]+/(CH3)2O system are explained in terms of the corresponding potential‐energy surfaces.  相似文献   

18.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

19.
The largest interplanar distance known to date between adjacent parallel rings of any sandwich compound (5.497(3) Å) is displayed by decaisopropylbarocene, the first heavy alkaline earth metal sandwich compound to possess axial symmetry. A new efficient metallocene formation [Eq. (1)] utilizes the free cyclopentadienyl radical [C5R5]. (R=CHMe2) as an oxidizing agent for elemental Ca, Sr, and Ba (M).  相似文献   

20.
M(SCN)2 (M = Eu, Sr, Ba): Crystal Structure, Thermal Behaviour, Vibrational Spectroscopy Single crystals of M(SCN)2 (M = Eu, Sr, Ba) have been obtained via metathesis of NaSCN and MCl2 (M = Eu, Sr, Ba) at 340 °C. The isotypic crystal structures of the thiocyanates M(SCN)2 (C2/c, Z = 4, Eu: a = 979.3(2), b = 660.8(1), c = 815.7(2) pm, β = 91.58(3)°, Rall = 0.0245, Sr: a = 985.5(2), b = 662.9(2), c = 819.6(2) pm, β = 91.29(3)°, Rall = 0.0435, Ba: a = 1018.8(2), b = 687.2(1), c = 852.2(1) pm, β = 92.43(2)°, Rall = 0.0392) contain alternating layers of M2+ and SCN. According to M(SCN)4/4(NCS)4/4 M2+ is eight‐coordinated by four sulfur and four nitrogen atoms forming a square antiprism. Thermal investigations show that the compounds melt without decomposition. Vibrational spectroscopic investigations are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号