首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight coumarins, which carry a terminal alkene tethered by a CH(2)XCH(2) group to their 4-position (X = CH(2), CMe(2), O, S, NBoc, NZ, NTs, NBn), were synthesized in overall yields of 51-80?%. Starting materials for the syntheses were either commercially available 4-hydroxycoumarin or 4-formylcoumarin. The intramolecular [2+2] photocycloaddition of these coumarins gave diastereoselectively products with a tetracyclic 3,3a,4,4a-tetrahydro-1H-cyclopenta[2,3]cyclobuta[1,2-c]chromen-5(2H)-one skeleton. Direct irradiation at λ = 300?nm in dichloromethane (c = 10?mM) led to product formation in good yields for most substrates, presumably via a singlet excited state intermediate. Due to the low coumarin absorption at λ >350?nm the photocycloaddition was slow upon irradiation at λ = 366?nm. Addition of a chiral oxazaborolidine-based Lewis acid (50?mol?%) increased the reaction rate at λ = 366?nm and induced a significant enantioselectivity in the [2+2] photocycloaddition. Six out of eight coumarin substrates (X = CH(2), CMe(2), O, NBoc, NZ, NTs) gave the respective products in yields of 72-96?% and with 74-90?% enantiomeric excess (ee) upon irradiation in dichloromethane (c = 20?mM) at -75?°C. The Lewis acid presumably acts by coordination to the coumarin carbonyl oxygen atom, which leads to a bathochromic shift (redshift) of the UV absorption and which increases the singlet state lifetime. A second electrostatic interaction of the hydrogen atom at C3 with the oxygen atom of the oxazaborolidine is likely.  相似文献   

2.
The intramolecular [2+2] photocycloaddition of four 4‐(but‐3‐enyl)oxyquinolones (substitution pattern at the terminal alkene carbon atom: CH2, Z‐CHEt, E‐CHEt, CMe2) and two 3‐(but‐3‐enyl)oxyquinolones (substitution pattern: CH2, CMe2) was studied. Upon direct irradiation at λ=300 nm, the respective cyclobutane products were formed in high yields (83–95 %) and for symmetrically substituted substrates with complete diastereoselectivity. Substrates with a Z‐ or E‐substituted terminal double bond showed a stereoconvergent reaction course leading to mixtures of regio‐ and diastereomers with almost identical composition. The mechanistic course of the photocycloaddition was elucidated by transient absorption spectroscopy. A triplet intermediate was detected for the title compounds, which–in contrast to simple alkoxyquinolones such as 3‐butyloxyquinolone and 4‐methoxyquinolone–decayed rapidly (τ≈1 ns) through cyclization to a triplet 1,4‐diradical. The diradical can evolve through two reaction channels, one leading to the photoproduct and the other leading back to the starting material. When the photocycloaddition was performed in the presence of a chiral sensitizer (10 mol %) upon irradiation at λ=366 nm in trifluorotoluene as the solvent, moderate to high enantioselectivities were achieved. The two 3‐(but‐3‐enyl)oxyquinolones gave enantiomeric excesses (ees) of 60 and 64 % at ?25 °C, presumably because a significant racemic background reaction occurred. The 4‐substituted quinolones showed higher enantioselectivities (92–96 % ee at ?25 °C) and, for the terminally Z‐ and E‐substituted substrates, an improved regio‐ and diastereoselectivity.  相似文献   

3.
The intramolecular [2+2] photocycloaddition of 3-alkenyl-2-cycloalkenones was performed in an enantioselective fashion (nine representative examples, 54–86 % yield, 76–96 % ee) upon irradiation at λ=366 nm in the presence of an AlBr3-activated oxazaborolidine as the Lewis acid. An extensive screening of proline-derived oxazaborolidines showed that the enantioface differentiation depends strongly on the nature of the aryl group at the 3-position of the heterocycle. DFT calculations of the Lewis acid–substrate complex indicate that attractive dispersion forces may be responsible for a change of the binding mode. The catalytic [2+2] photocycloaddition was shown to proceed on the triplet hypersurface with a quantum yield of 0.05. The positive effect of Lewis acids on the outcome of a given intramolecular [2+2] photocycloaddition was illustrated by optimizing the key step in a concise total synthesis of the sesquiterpene (±)-italicene.  相似文献   

4.
Εniminium ions were prepared from the corresponding α,β‐unsaturated carbonyl compounds (enones and enals), and were found to be promoted to their respective triplet states by energy transfer. The photoexcited intermediates underwent intra‐ or intermolecular [2+2] photocycloaddition in good yields (50–78 %) upon irradiation at λ=433 nm or λ=457 nm. Iridium or ruthenium complexes with a sufficiently high triplet energy were identified as efficient catalysts (2.5 mol % catalyst loading) for the reaction. The intermolecular [2+2] photocycloaddition of an eniminium ion derived from a chiral secondary amine proceeded with high enantioselectivity (88 % ee).  相似文献   

5.
Although progress has been made to improve photocatalytic CO2 reduction under visible light (λ>400 nm), the development of photocatalysts that can work under a longer wavelength (λ>600 nm) remains a challenge. Now, a heterogeneous photocatalyst system consisting of a ruthenium complex and a monolayer nickel‐alumina layered double hydroxide (NiAl‐LDH), which act as light‐harvesting and catalytic units for selective photoreduction of CO2 and H2O into CH4 and CO under irradiation with λ>400 nm. By precisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3 %, and the H2 evolution reaction can be completely suppressed under irradiation with λ>600 nm. The photogenerated electrons matching the energy levels of photosensitizer and m‐NiAl‐LDH only localized at the defect state, providing a driving force of 0.313 eV to overcome the Gibbs free energy barrier of CO2 reduction to CH4 (0.127 eV), rather than that for H2 evolution (0.425 eV).  相似文献   

6.
Reversible photo‐cross‐linking of a DNA duplex through the [2+2] photocycloaddition of styrylpyrene is reported. Styrylpyrene moieties on d ‐threoninol linkers were introduced into complementary positions on DNA strands. Irradiation of the styrylpyrene pair in the duplex with visible light at λ=455 nm induced a [2+2] photocycloaddition between styrylpyrenes that cross‐linked the two strands of the duplex. Two diastereomers were formed after [2+2] photocycloaddition as a result of rotation of the styrylpyrene residues. Also, the cycloreversion reaction was induced by UV light at λ=340 nm, which reversibly yielded the uncross‐linked strands.  相似文献   

7.
Molecular rectangles were obtained from two bis(NHC) ligands, each featuring two terminal coumarin groups and two Ag+, Au+, or Cu+ ions. Upon UV irradiation (λ=365 nm), the dinuclear complexes undergo photochemical modification through a [2+2] cycloaddition reaction of two adjacent coumarin moieties to give a macrocyclic tetra(NHC) ligand. The photodimerization of the coumarin pendants proceeds stereoselectively to give the syn‐head‐head isomers in all cases. Subsequent irradiation at λ=254 nm initiates a photocleavage reaction with reconstitution of the initial dinuclear complexes with coumarin pendants.  相似文献   

8.
Starting from readily available 7‐substituted 1‐indanones, products with a tetracyclo[5.3.1.01,704,11]undec‐2‐ene skeleton were obtained upon irradiation at λ=350 nm (eight examples, 49–67 % yield). The assembly of the structurally complex carbon framework proceeds in a three‐photon process comprising an ortho photocycloaddition, a disrotatory [4π] photocyclization, and a di‐π‐methane rearrangement. The flat aromatic core of the starting material is converted into a functionalized polycyclic hydrocarbon with exit vectors in three dimensions. Ring opening reactions at the central cyclopropane ring were explored, which enable the preparation of tricyclo[5.3.1.04,11]undec‐2‐enes and of tricyclo[6.2.1.01,5]undecanes.  相似文献   

9.
N‐alkenyl maleimides are found to exhibit spin state‐specific chemoselectivities for [2 + 2] and [5 + 2] photocycloadditions; but, reaction mechanism is still unclear. In this work, we have used high‐level electronic structure methods (DFT, CASSCF, and CASPT2) to explore [2 + 2] and [5 + 2] photocycloaddition reaction paths of an N‐alkenyl maleimide in the S1 and T1 states as well as relevant photophysical processes. It is found that in the S1 state [5 + 2] photocycloaddition reaction is barrierless and thus overwhelmingly dominant; [2 + 2] photocycloaddition reaction is unimportant because of its large barrier. On the contrary, in the T1 state [2 + 2] photocycloaddition reaction is much more favorable than [5 + 2] photocyclo‐addition reaction. Mechanistically, both S1 [5 + 2] and T1 [2 + 2] photocycloaddition reactions occur in a stepwise, nonadiabatic means. In the S1 [5 + 2] reaction, the secondary C atom of the ethenyl moiety first attacks the N atom of the maleimide moiety forming an S1 intermediate, which then decays to the S0 state as a result of an S1 → S0 internal conversion. In the T1 [2 + 2] reaction, the terminal C atom of the ethenyl moiety first attacks the C atom of the maleimide moiety, followed by a T1 → S0 intersystem crossing process to the S0 state. In the S0 state, the second C C bond is formed. Our present computational results not only rationalize available experiments but also provide new mechanistic insights. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Triplet difluorophosphoryl nitrene F2P(O)N (X3A′′) was generated on ArF excimer laser irradiation (λ=193 nm) of F2P(O)N3 in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS‐QB3 calculations. On visible light irradiation (λ>420 nm) at 16 K F2P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (λ=255 nm) of F2P(O)N (X3A′′) induced a Curtius‐type rearrangement, but instead of a 1,3‐fluorine shift, nitrogen migration to give F2PON is proposed to be the first step of the photoisomerization of F2P(O)N into F2PNO (difluoronitrosophosphine). Formation of novel F2PNO was confirmed with 15N‐ and 18O‐enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P? N bond of 1.922 Å [B3LYP/6‐311+G(3df)] and low bond‐dissociation energy of 76.3 kJ mol?1 (CBS‐QB3) for F2PNO.  相似文献   

11.
Molecular Structure and Thermal Stability of the Metallacyclic Platinum(II) Complex [Li(TMEDA)]2Pt(CH2CMe2CMe2CH2)2 The X‐ray investigation at the “ate‐complex” [Li(TMEDA)]2Pt(CH2CMe2CMe2CH2)2 ( 1 ) revealed a new structure type of homoleptic organometallic compounds of platinum(II). Differences of the molecular structure of the “ate‐complex” [Li(TMEDA)]2Pt(CH2CH2CH2CH2)2 ( 2 ) as well as similarities to the structure of the homologeous “ate‐complex” of nickel(II) [Li(TMEDA)]2Ni(CH2CMe2CMe2CH2)2 ( 3 ) are described. A possible mechanism of the thermal decomposition of the complex 1 is discussed.  相似文献   

12.
An environment‐sensitive fluorophore can change its maximum emission wavelength (λem), fluorescence quantum yield (Φf), and fluorescence lifetime in response to the surrounding environment. We have developed two new intramolecular charge‐transfer‐type environment‐sensitive fluorophores, DBThD‐IA and DBSeD‐IA, in which the oxygen atom of a well‐established 2,1,3‐benzoxadiazole environment‐sensitive fluorophore, DBD‐IA, has been replaced by a sulfur and selenium atom, respectively. DBThD‐IA is highly fluorescent in n‐hexane (Φf=0.81, λem=537 nm) with excitation at 449 nm, but is almost nonfluorescent in water (Φf=0.037, λem=616 nm), similarly to DBD‐IA (Φf=0.91, λem=520 nm in n‐hexane; Φf=0.027, λem=616 nm in water). A similar variation in fluorescence properties was also observed for DBSeD‐IA (Φf=0.24, λem=591 nm in n‐hexane; Φf=0.0046, λem=672 nm in water). An intensive study of the solvent effects on the fluorescence properties of these fluorophores revealed that both the polarity of the environment and hydrogen bonding with solvent molecules accelerate the nonradiative relaxation of the excited fluorophores. Time‐resolved optoacoustic and phosphorescence measurements clarified that both intersystem crossing and internal conversion are involved in the nonradiative relaxation processes of DBThD‐IA and DBSeD‐IA. In addition, DBThD‐IA exhibits a 10‐fold higher photostability in aqueous solution than the original fluorophore DBD‐IA, which allowed us to create a new robust molecular nanogel thermometer for intracellular thermometry.  相似文献   

13.
The design of a synthetic route to a class of enantiomerically pure phosphaalkene–oxazolines (PhAk‐Ox) is presented. The condensation of a lithium silylphosphide and a ketone (the phospha‐Peterson reaction) was used as the P?C bond‐forming step. Attempted condensation of PhC(?O)Ox (Ox=CNOCH(iPr)C H2) and MesP(SiMe3)Li gave the unusual heterocycle (MesP)2C(Ph)?CN‐(S)‐CH(iPr)CH2O ( 3 ). However, PhAk‐Ox (S,E)‐MesP?C(Ph)CMe2Ox ( 1 a ) was successfully prepared by treating MesP(SiMe3)Li with PhC(?O)CMe2Ox (52 %). To demonstrate the modularity and tunability of the phospha‐Peterson synthesis several other phosphaalkene–oxazolines were prepared in an analogous manner to 1 a : TripP?C(Ph)CMe2Ox ( 1 b ; Trip=2,4,6‐triisopropylphenyl), 2‐iPrC6H4P?C(Ph)CMe2Ox ( 1 c ), 2‐tBuC6H4P?C(Ph)CMe2Ox ( 1 d ), MesP?C(4‐MeOC6H4)CMe2Ox ( 1 e ), MesP?C(Ph)C(CH2)4Ox ( 1 f ), and MesP?C(3,5‐(CF3)2C6H3)C(CH2)4Ox ( 1 g ). To evaluate the PhAk‐Ox compounds as prospective precursors to chiral phosphine polymers, monomer 1 a and styrene were subjected to radical‐initiated copolymerization conditions to afford [{MesPC(Ph)(CMe2Ox)}x{CH2CHPh}y]n ( 9 a : x=0.13n, y=0.87n; GPC: Mw=7400 g mol?1, PDI=1.15).  相似文献   

14.
Gold particles supported on tin(IV) oxide (0.2 wt % Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt % Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt % Ag. These Cu‐ and Ag‐modified 0.2 wt % Au/SnO2 materials (Cu‐Au/SnO2 and Ag‐Au/SnO2) and 1.0 wt % Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light‐emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu‐Au/SnO2, Au/SnO2, and Ag‐Au/SnO2 reached 5.5 % at 625 nm, 5.8 % at 525 nm, and 5.1 % at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible‐light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously.  相似文献   

15.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

16.
On irradiation (λ=350 nm) in the presence of 1,1‐dimethoxyethene, naphthalene‐1,2‐dionemonoacetals 1 regioselectively afford 1,1,4,4‐tetramethoxycyclobuta[a]naphthalen‐3‐ones 3 . Sequential deprotection of these bis‐acetals first lead to 1,1‐dimethoxycyclobuta[a]naphthalene‐3,4‐diones 4 and then to cyclobuta[a]naphthalene‐1,3,4‐triones 6 , which, in turn, are converted into (3,4‐dihydro‐3,4‐dioxonaphthalen‐2‐yl)acetates 7 by treatment with SiO2/MeOH/air.  相似文献   

17.
The photo-initiated defluorination of iridium hexafluoride (IrF6) was investigated in neon and argon matrices at 6 K, and their photoproducts are characterized by IR and UV-vis spectroscopies as well as quantum-chemical calculations. The primary photoproducts obtained after irradiation with λ=365 nm are iridium pentafluoride (IrF5) and iridium trifluoride (IrF3), while longer irradiation of the same matrix with λ=278 nm produced iridium tetrafluoride (IrF4) and iridium difluoride (IrF2) by Ir−F bond cleavage or F2 elimination. In addition, IrF5 can be reversed to IrF6 by adding a F atom when exposed to blue-light (λ=470 nm) irradiation. Laser irradiation (λ=266 nm) of IrF4 also generated IrF6, IrF5, IrF3 and IrF2. Alternatively, molecular binary iridium fluorides IrFn (n=1–6) were produced by co-deposition of laser-ablated iridium atoms with elemental fluorine in excess neon and argon matrices under cryogenic conditions. Computational studies up to scalar relativistic CCSD(T)/triple-ζ level and two-component quasirelativistic DFT computations including spin-orbit coupling effects supported the formation of these products and provided detailed insights into their molecular structures by their characteristic Ir−F stretching bands. Compared to the Jahn-Teller effect, the influence of spin-orbit coupling dominates in IrF5, leading to a triplet ground state with C4v symmetry, which was spectroscopically detected in solid argon and neon matrices.  相似文献   

18.
尹汉东  薛绳才  王其宝 《中国化学》2004,22(10):1187-1191
Introduction Dimeric tetraorganodistannoxanes are a kind of in-teresting organotin oxo clusters and have attracted con-siderable attention during the last several decades, in view of their unique structural features1-5 as well as their applications as biocides6,7 and in homogenous cataly-sis.8,9 In the solid state, they contain characteristic Sn4O2X2Y2 structural motifts with staircase or ladder arrangements, a planar four-membered Sn2O2 ring and, generally, penta-coordination around the tin…  相似文献   

19.
The novel complex di‐n‐butyltin(IV) 2‐oxo‐propionic acid (4‐pyridinecarbonyl) hydrazone, (n‐C4H9)2Sn‐[O2CC(CH3)=N‐N=C(‐O)C5N‐4] (H2O) has been synthesized and its structure has been determined by X‐ray diffraction analysis. The complex crystallizes in orthorhombic system with space group Pca21. Crystal data: a=2.7540(9) nm, b=0.9676(3) nm, c= 1.5750(5) nm, V=4.197(2) nm3, Dc= 1.444 g/cm3, Z=8. μ= 1.241 mm?1. F(000)= 1856, R1=0.0462 and wR2=0.1001. In the crystals of the title complex, the tin atom is in six‐coordination with a distorted octahedral geometry, three oxygen atoms [O(1), O(3) and O(4)] and one nitrogen atom N(1) forming the equatorial plane and C(10)‐Sn(1)‐C(14) being the axis. Two molecules form a dimer with weak interactions of Sn‐O bonding and hydrogen bonds.  相似文献   

20.
1,3‐Dithiane‐protected enones (enone dithianes) were found to undergo an intramolecular [2+2] photocycloaddition under visible‐light irradiation (λ =405 nm) in the presence of a Brønsted acid (7.5–10 mol %). Key to the success of the reaction is presumably the formation of colored thionium ions, which are intermediates of the catalytic cycle. Cyclobutanes were thus obtained in very good yields (78–90 %). It is also shown that the dithiane moiety can be reductively or oxidatively removed without affecting the photochemically constructed ring skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号