首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

2.
We report a new class of stable mesoionic N‐heterocyclic olefins, featuring a highly polarized (strongly ylidic) double bond. The ground‐state structure cannot be described through an uncharged mesomeric Lewis‐structure, thereby structurally distinguishing them from traditional N‐heterocyclic olefins (NHOs). mNHOs can easily be obtained through deprotonation of the corresponding methylated N,N′‐diaryl‐1,2,3‐triazolium and N,N′‐diaryl‐imidazolium salts, respectively. In their reactivity, they represent strong σ‐donor ligands as shown by their coordination complexes of rhodium and boron. Their calculated proton affinities, their experimentally derived basicities (competition experiments), as well as donor abilities (Tolman electronic parameter; TEP) exceed the so far reported class of NHOs.  相似文献   

3.
This account is a review on the synthesis and transition‐metal coordination chemistry of N‐heterocyclic silylenes (NHSi’s) over the last 20 years till the present time (2012). Recently, fascinating and novel synthetic methods have been developed to access transition‐metal–NHSi complexes as an emerging class of compounds with a wealth of intriguing reactivity patterns. The striking influence of coordinating NHSi’s to transition‐metal complex fragments affording different reactivities to the “free” NHSi is a connecting theme (“leitmotif”) throughout the review, and highlights the potential of these compounds which lie at the interface of contemporary main‐group and classical organometallic chemistry towards new molecular catalysts for small‐molecule activation.  相似文献   

4.
N‐Heterocyclic carbenes (NHC's) are known to serve as efficient substrates for the stabilization of various transient species possessing low‐valent Group 14 elements and for the generation of double E=C bonds. Herein, we report that the thermal tri‐ and tetramerizations of pyridoannulated silylene 1 lead to the formation of remarkably stable silenes 2 and 3 featuring zwitterionic distribution of electron density. Co‐oligomerization of 1 and its germanium analogue gives a related tetrameric product 4 containing low‐valent germanium atom stabilized by binding with the partial carbene‐character C atom. Bonding situations in 2 – 4 are best described as silene or germene with the significant zwitterionic distribution of electron density. The singlet diradical electronic state of 2 is 10 kcal mol?1 higher than the ground state configuration.  相似文献   

5.
Here we describe the fusion of two families of unusual carbon‐containing molecules that readily disregard the tendency of carbon to form four chemical bonds, namely N‐heterocyclic carbenes (NHCs) and carborane anions. Deprotonation of an anionic imidazolium salt with lithium diisopropylamide at room temperature leads to a mixture of lithium complexes of C‐2 and C‐5 dianionic NHC constitutional isomers as well as a trianionic (C‐2, C‐5) adduct. Judicious choice of the base and reaction conditions allows the selective formation of all three stable polyanionic carbenes. In solution, the so‐called abnormal C‐5 NHC lithium complex slowly isomerizes to the normal C‐2 NHC, and the process can be proton‐catalyzed by the addition of the anionic imidazolium salt. These results indicate that the combination of two unusual forms of carbon atoms can lead to unexpected chemical behavior, and that this strategy paves the way for the development of a broad new generation of NHC ligands for catalysis.  相似文献   

6.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

7.
8.
9.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

10.
《中国化学会会志》2017,64(4):420-426
Six new silver complexes containing symmetrical N ‐heterocyclic carbene (NHC ) ligands were synthesized by the reaction of azolium salts with Ag2O in CH2Cl2 . These complexes were tested against Gram‐negative bacterial strains (Escherichia coli and Pseudomonas aeruginosa ), Gram‐positive bacterial strains (Enterococcus faecalis and Staphylococcus aureus ), and fungal strains (Candida albicans and Candida tropicalis ), and all tested complexes showed good activity against the different microorganisms.  相似文献   

11.
By means of a combined experimental and theoretical approach, the electronic features and chemical behavior of metalla‐N‐heterocyclic carbenes (MNHCs, N‐heterocyclic carbenes containing a metal atom within the heterocyclic skeleton) have been established and compared with those of classical NHCs. MNHCs are strongly basic (proton affinity and pKa values around 290 kcal mol?1 and 36, respectively) with a narrow singlet–triplet gap (around 23 kcal mol?1). MNHCs can be generated from the corresponding metalla‐imidazolium salts and trapped by addition of transition‐metal complexes affording the corresponding heterodimetallic dicarbene derivatives, which can serve as carbene transfer agents.  相似文献   

12.
A new synthetic route to complexes of the cationic N‐heterocyclic carbene ligand 2 has been developed by the attachment of a cationic pentamethylcyclopentadienylruthenium ([RuCp*]+) fragment to a metal‐coordinated benzimidazol‐2‐ylidene ligand. The coordination chemistry and the steric and electronic properties of the cationic carbene were investigated in detail by experimental and theoretical methods. X‐ray structures of three carbene–metal complexes were determined. The cationic ligand 2 is a poorer overall electron donor relative to the related neutral carbene, which is evident from cyclic voltammetry (CV) and IR measurements.  相似文献   

13.
The ubiquitous structure of δ‐lactones makes the development of new methods for their enantioselective and stereoselective synthesis an important ongoing challenge. The intermolecular dynamic kinetic resolution (DKR) of β‐halo‐α‐ketoesters cooperatively catalyzed by an N‐heterocyclic carbene and a Lewis acid generates two contiguous stereocenters with remarkable diastereoselectivity through an oxidation/lactonization sequence.  相似文献   

14.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

15.
Getting a fix : N‐heterocyclic carbenes (NHCs) and NHC–CO2 adducts serve as potent organocatalysts for carbonate synthesis by the addition of a CO2 unit to propargylic alcohols or epoxides under mild and solvent‐free reaction conditions (see scheme). The enhanced Lewis basicity of imidazol‐2‐ylidenes bearing electron‐donating alkyl groups on the nitrogen atoms leads to utilizing CO2 as a nucleophilic fragment in the chemical fixation processes.

  相似文献   


16.
A cyclometalated N‐heterocyclic carbene ligand in a half‐sandwich iron complex was found to couple with alkynes, leading to a unique type of ring opening of the carbene ligand and the formation of ferrocenyl–diimine complexes. An intermediary iron complex obtained from the reaction with phenylacetylene reveals that the ring opening follows the formation of a fused heterocycle consisting of an imidazole ring and two alkynes.  相似文献   

17.
18.
N‐Heterocyclic carbene adducts of aluminium triiodide, IMes · AlI3 ( 1 ) and IPr · AlI3 ( 2 ) (IMes = 1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene and IPr = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) are reported. These adducts are available by the reaction of aluminium triiodide with the correspondingN‐heterocyclic carbene. Compounds 1 and 2 are soluble in hydrocarbon solvents, stable in inert atmosphere, and have been characterised by elemental analysis, NMR spectroscopy and single‐crystal X‐ray diffraction studies.  相似文献   

19.
The multicomponent reactions of aldehydes, electron deficient alkynes and amines have been successfully performed to yield a number of symmetrical 2,6‐unsubstituted 1,4‐dihydropyridines (1,4‐DHPs). This method has been found generally applicable for the synthesis of both N‐substituted and N‐unsubstituted 1,4‐DHPs by employing secondary amine to activate the alkyne component via enaminoester intermediates. The present method runs through an enamine type activation, which is different from the known approach employing AcOH as solvent.  相似文献   

20.
The ruthenium benzimidazolylidene‐based N‐heterocyclic carbene (NHC) complex 4 catalyzes the direct dehydrogenative condensation of primary alcohols into esters and primary alcohols in the presence of amines to the corresponding amides in high yields. This efficient new catalytic system shows a high selectivity towards the conversion of diols to polyesters and of a mixture of diols and diamines to polyamides. The only side product formed in this reaction is molecular hydrogen. Remarkable is the conversion of hydroxytelechelic polytetrahydrofuran ( = 1000 g mol−1)—a polydispers starting material—into a hydrolytically degradable polyether with ester linkages ( = 32 600 g mol−1) and, in the presence of aliphatic diamines, into a polyether with amide linkages in the back bone ( = 16 000 g mol−1).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号