共查询到20条相似文献,搜索用时 13 毫秒
1.
Metal‐Ion Metathesis and Properties of Triarylboron‐Functionalized Metal–Organic Frameworks 下载免费PDF全文
Xiaoqing Wang Liangliang Zhang Jie Yang Fangna Dai Prof. Rongming Wang Prof. Daofeng Sun 《化学:亚洲杂志》2015,10(7):1535-1540
An anionic metal–organic framework, H3[(Mn4Cl)3 L 8]?30 H2O?2.5 DMF?5 Diox ( UPC‐15 ), was successfully prepared by the reaction of MnCl2 with tris(p‐carboxylic acid)tridurylborane (H3 L ) under solvothermal conditions. UPC‐15 with wide‐open pores (~18.8 Å) is constructed by packing of octahedral and cuboctahedral cages, and exhibits high gas‐sorption capabilities. Notably, UPC‐15 shows selective adsorption of cationic dyes due to the anion framework. Moreover, the catalytic and magnetic properties were investigated, and UPC‐15 can highly catalyze the cyanosilylation of aromatic aldehydes. UPC‐15 exhibits the exchange of metal ions from Mn to Cu in a single‐crystal‐to‐single‐crystal manner to generate UPC‐16 , which could not be obtained by the direct solvothermal reaction of CuCl2 and H3 L. UPC‐16 exhibits similar properties for gas sorption, dye separation, and catalytic activity. However, the magnetic behaviors for UPC‐15 and UPC‐16 are distinct due to the metal‐specific properties. Below 47 K, UPC‐15 exhibits a ferromagnetic coupling but UPC‐16 shows a dominant antiferromagnetic behavior. 相似文献
2.
Eleftheria Neofotistou Christos D. Malliakas Dr. Pantelis N. Trikalitis Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(18):4523-4527
Gas storage : A new, sulfone‐functionalized dicarboxylate‐based ligand (see figure) is capable of directing the formation of novel metal–organic frameworks with unprecedented organic and inorganic secondary building units. A high CO2 uptake with remarkable selectivity over CH4, N2, and H2 was observed at near‐ambient temperature.
3.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective. 相似文献
4.
Yonghwi Kim Dr. Sunirban Das Saurav Bhattacharya Soonsang Hong Dr. Min Gyu Kim Dr. Minyoung Yoon Prof. Dr. Srinivasan Natarajan Prof. Dr. Kimoon Kim 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(52):16642-16648
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65. 相似文献
5.
Dr. Jared B. DeCoste Dr. Mitchell H. Weston Patrick E. Fuller Trenton M. Tovar Gregory W. Peterson Dr. M. Douglas LeVan Dr. Omar K. Farha 《Angewandte Chemie (International ed. in English)》2014,53(51):14092-14095
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications. 相似文献
6.
Yangyang Liu Dr. Jian‐Rong Li Wolfgang M. Verdegaal Tian‐Fu Liu Prof. Hong‐Cai Zhou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(18):5637-5643
Four isostructural metal–organic frameworks (MOFs) with various functionalized pore surfaces were synthesized from a series of diisophthalate ligands. These MOFs exhibit a new network topology of {4.64.8}2{42.64}{64.82}2{66}. Hydrogen uptake as high as 2.67 wt % at 77 K/1 bar and CO2 uptake of 15.4 wt % at 297 K/1 bar have been observed for PCN‐308, which contains ? CF3 groups. The isostructural series of MOFs also showed reasonable adsorption selectivity of CO2 over CH4 and N2. 相似文献
7.
Jan Hynek Dr. Petr Brázda Dr. Jan Rohlíček Dr. Michael G. S. Londesborough Dr. Jan Demel 《Angewandte Chemie (International ed. in English)》2018,57(18):5016-5019
Metal–organic frameworks (MOFs) are a chemically and topologically diverse family of materials composed of inorganic nodes and organic linkers bound together by coordination bonds. Presented here are two significant innovations in this field. The first is the use of a new coordination group, phenylene‐1,4‐bis(methylphosphinic acid) (PBPA), a phosphinic acid analogue of the commonly used terephtalic acid. Use of this new linker group leads to the formation of a hydrothermally stable and permanently porous MOF structure. The second innovation is the application of electron‐diffraction tomography, coupled with dynamic refinement of the EDT data, to the elucidation of the structure of the new material, including the localization of hydrogen atoms. 相似文献
8.
Exploiting Large‐Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms 下载免费PDF全文
We review the molecular mechanisms behind adsorption and the separations of mixtures in metal–organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next‐generation adsorbents, the separation efficiency of the materials needs to be improved. The performance under industrially relevant conditions largely depends on two factors: 1) the separation selectivity and 2) the pore volume capacity of the material. Enthalpic mechanisms can lead to increased selectivities, but these are mostly restricted to the low loading regime, and hence these mechanisms are unable to make use of all of the large‐pore volume that a metal–organic framework can provide. Industrial processes routinely operate in the pore saturation regime. In this Review, we focus on entropic molecular separation mechanisms that are effective under these conditions and, in particular, on a recent methodology to obtain high selectivities at high pore loading. 相似文献
9.
Fahime Bigdeli Christina T. Lollar Ali Morsali Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2020,59(12):4652-4669
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability. 相似文献
10.
Dr. Tanya K. Todorova Dr. Xavier Rozanska Dr. Christel Gervais Dr. Alexandre Legrand Dr. Linh N. Ho Pierrick Berruyer Dr. Anne Lesage Prof. Lyndon Emsley Dr. David Farrusseng Dr. Jérôme Canivet Dr. Caroline Mellot‐Draznieks 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(46):16531-16538
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions. 相似文献
11.
Hye Jeong Park Young Eun Cheon Prof. Myunghyun Paik Suh 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(38):11662-11669
The porous metal–organic framework (MOF) {[Zn2(TCPBDA)(H2O)2]?30 DMF?6 H2O}n ( SNU‐30 ; DMF=N,N‐dimethylformamide) has been prepared by the solvothermal reaction of N,N,N′,N′‐tetrakis(4‐carboxyphenyl)biphenyl‐4,4′‐diamine (H4TCPBDA) and Zn(NO3)2?6 H2O in DMF/tBuOH. The post‐synthetic modification of SNU‐30 by the insertion of 3,6‐di(4‐pyridyl)‐1,2,4,5‐tetrazine (bpta) affords single‐crystalline {[Zn2(TCPBDA)(bpta)]?23 DMF?4 H2O}n ( SNU‐31 SC ), in which channels are divided by the bpta linkers. Interestingly, unlike its pristine form, the bridging bpta ligand in the MOF is bent due to steric constraints. SNU‐31 can be also prepared through a one‐pot solvothermal synthesis from ZnII, TCPBDA4?, and bpta. The bpta linker can be liberated from this MOF by immersion in N,N‐diethylformamide (DEF) to afford the single‐crystalline SNU‐30 SC , which is structurally similar to SNU‐30 . This phenomenon of reversible insertion and removal of the bridging ligand while preserving the single crystallinity is unprecedented in MOFs. Desolvated solid SNU‐30′ adsorbs N2, O2, H2, CO2, and CH4 gases, whereas desolvated SNU‐31′ exhibits selective adsorption of CO2 over N2, O2, H2, and CH4, thus demonstrating that the gas adsorption properties of MOF can be modified by post‐synthetic insertion/removal of a bridging ligand. 相似文献
12.
Osama Shekhah Dr. Hui Wang Denise Zacher Roland A. Fischer Prof. Christof Wöll Prof. 《Angewandte Chemie (International ed. in English)》2009,48(27):5038-5041
One step at a time : The in situ monitoring of the step‐by‐step formation of metal–organic frameworks (MOFs) by using surface plasmon resonance (SPR), allows the nucleation process and the formation of the secondary building units to be investigated. Growth rates on functionalized organic surfaces with different crystallographic orientations can also be studied.
13.
Switch‐On Fluorescence of a Perylene‐Dye‐Functionalized Metal–Organic Framework through Postsynthetic Modification 下载免费PDF全文
Dr. Christian Dietl Henrik Hintz Dr. Bastian Rühle Prof. Dr. Jörn Schmedt auf der Günne Prof. Dr. Heinz Langhals Dr. Stefan Wuttke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(30):10714-10720
A perylene dye was introduced directly as a linker into a metal–organic framework (MOF) during synthesis. Depending on the dye concentration in the MOF synthesis mixture, different fluorescent materials were generated. The successful incorporation of the dye was proven by using 13C and 27Al MAS NMR spectroscopy, by solution NMR spectroscopy after digestion of the MOF sample, and by synthesizing a reference dye without connecting groups, which could coordinate on the metal–oxo cluster inside the MOF. Fluorescence quenching effects of the MOF linker, 2‐aminoterephthalate, were observed and overcome by postsynthetic modification with acetic anhydride. We show here for the first time that amino groups, which can be used as anchoring points for covalent attachment of other molecules, are responsible for fluorescence quenching. Thus, a very promising strategy to implement switchable fluorescence into MOFs is shown here. 相似文献
14.
Jun Heuk Park Jan Paczesny Namhun Kim Bartosz A. Grzybowski 《Angewandte Chemie (International ed. in English)》2020,59(26):10301-10305
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations. 相似文献
15.
Jinqiao Dong Xing Han Yan Liu Haiyang Li Yong Cui 《Angewandte Chemie (International ed. in English)》2020,59(33):13722-13733
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications. 相似文献
16.
Effect of Functionalized Groups on Gas‐Adsorption Properties: Syntheses of Functionalized Microporous Metal–Organic Frameworks and Their High Gas‐Storage Capacity 下载免费PDF全文
Yanlong Wang Chunhong Tan Zhihao Sun Zhenzhen Xue Dr. Qilong Zhu Dr. Chaojun Shen Dr. Yuehong Wen Dr. Shengmin Hu Yong Wang Prof. Tianlu Sheng Prof. Xintao Wu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(5):1341-1348
The microporous metal–organic framework (MMOF) Zn4O(L1)2 ? 9 DMF ? 9 H2O ( 1‐H ) and its functionalized derivatives Zn4O(L1‐CH3)2 ? 9 DMF ? 9 H2O ( 2‐CH3 ) and Zn4O(L1‐Cl)2 ? 9 DMF ? 9 H2O ( 3‐Cl ) have been synthesized and characterized (H3L1=4‐[N,N‐bis(4‐methylbenzoic acid)amino]benzoic acid, H3L1‐CH3=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐methylbenzoic acid, H3L1‐Cl=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐chlorobenzoic acid). Single‐crystal X‐ray diffraction analyses confirmed that the two functionalized MMOFs are isostructural to their parent MMOF, and are twofold interpenetrated three‐dimensional (3D) microporous frameworks. All of the samples possess enduring porosity with Langmuir surface areas over 1950 cm2 g?1. Their pore volumes and surface areas decrease in the order 1‐H > 2‐CH3 > 3‐Cl . Gas‐adsorption studies show that the H2 uptakes of these samples are among the highest of the MMOFs (2.37 wt % for 3‐Cl at 77 K and 1 bar), although their structures are interpenetrating. Furthermore, this work reveals that the adsorbate–adsorbent interaction plays a more important role in the gas‐adsorption properties of these samples at low pressure, whereas the effects of the pore volumes and surface areas dominate the gas‐adsorption properties at high pressure. 相似文献
17.
Symmetry‐Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology 下载免费PDF全文
Muwei Zhang Ying‐Pin Chen Mathieu Bosch Thomas Gentle III Kecheng Wang Dawei Feng Dr. Zhiyong U. Wang Prof. Dr. Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2014,53(3):815-818
Two stable, non‐interpenetrated MOFs, PCN‐521 and PCN‐523, were synthesized by a symmetry‐guided strategy. Augmentation of the 4‐connected nodes in the fluorite structure with a rigid tetrahedral ligand and substitution of the 8‐connected nodes by the Zr/Hf clusters yielded MOFs with large octahedral interstitial cavities. They are the first examples of Zr/Hf MOFs with tetrahedral linkers. PCN‐521 has the largest BET surface area (3411 m2 g‐1), pore size (20.5×20.5×37.4 Å) and void volume (78.5%) of MOFs formed from tetrahedral ligands. This work not only demonstrates a successful implementation of rational design of MOFs with desired topology, but also provides a systematic way of constructing non‐interpenetrated MOFs with high porosity. 相似文献
18.
David Farrusseng Dr. Sonia Aguado Dr. Catherine Pinel Dr. 《Angewandte Chemie (International ed. in English)》2009,48(41):7502-7513
The role of metal–organic frameworks (MOFs) in the field of catalysis is discussed, and special focus is placed on their assets and limits in light of current challenges in catalysis and green chemistry. Their structural and dynamic features are presented in terms of catalytic functions along with how MOFs can be designed to bridge the gap between zeolites and enzymes. The contributions of MOFs to the field of catalysis are comprehensively reviewed and a list of catalytic candidates is given. The subject is presented from a multidisciplinary point of view covering solid‐state chemistry, materials science, and catalysis. 相似文献
19.
Prof. Dr. Zhenlan Fang Bart Bueken Prof. Dr. Dirk E. De Vos Prof. Dr. Roland A. Fischer 《Angewandte Chemie (International ed. in English)》2015,54(25):7234-7254
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs. 相似文献