首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(1,4-phenylene sulfide) was sulfonated with chlorosulfonic acid in 1,2-dichloroethane. The product (IEC = 2.38 mequiv./g) was ground and sieved (mesh size 63 μm) to obtain small particles. The particles and linear polyethylene were mixed in various ratios and the resulting blends were press-molded at 150 °C to obtain the membranes. Membranes containing up to 66 wt.% of sulfonated particles could be prepared without any problem in mechanical strength. The membranes were characterized by their stability in oxidative environment, ionic conductivity, and diffusive permeability to methanol. The membrane containing 66 wt.% of sulfonated particles was almost as conductive as Nafion 117; it exhibited, however, much lower diffusive permeability to methanol. In a strongly oxidative environment (3% aqueous H2O2 at 70 °C), the prepared membranes were less stable than Nafion 117, but much more stable than membranes with sulfonated poly(styrene-co-divinylbenzene) particles. In preliminary laboratory tests with H2/O2 and direct methanol fuel cells, the prepared membranes with high concentrations of sulfonated particles performed similarly to Nafion 117.  相似文献   

2.
Hydrogen peroxide was incorporated into silica xerogel matrix over the concentration range from 3.8 to 68.0 wt% via the sol–gel route. The obtained composites were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The release rates of H2O2 from the composites into the aqueous phase were examined. In most cases, a 90% release was attained after ca. 10 min, and it was only slightly dependent on H2O2 concentration and particle size. The antimicrobial activity of the composite containing 3.59% H2O2 was evaluated against Escherichia coli and Micrococcus luteus. A comparative assay was carried out for aqueous solution of H2O2 of the same concentration. The results demonstrated a potent microbicidal efficacy of the composite. Furthermore, diffusion range of the hydrogen peroxide from the solid composite into an agar medium matched that of the H2O2 in aqueous solution. The stability tests with the xerogels containing 3.8, 26.4, and 68.0% of H2O2 showed that after 63 days respective losses of the H2O2 at 3 °C were 8.8, 9.7, and 6.2%. Both the DSC results and the stability tests have shown that the molecular water present in the pores stabilizes the composite, probably through improving the binding of the H2O2 molecules onto the silica surface.  相似文献   

3.
A series of γ-Al2O3 samples modified with various contents of sulfate (0–15 wt.%) and calcined at different temperatures (350–750 °C) were prepared by an impregnation method and physically admixed with CuO–ZnO–Al2O3 methanol synthesis catalyst to form hybrid catalysts. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the prepared hybrid catalysts under pressurized fixed-bed continuous flow conditions. The results revealed that the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration increased significantly when the content of sulfate increased to 10 wt.%, resulting in the increase in both DME selectivity and CO conversion. However, when the content of sulfate of SO42−/γ-Al2O3 was further increased to 15 wt.%, the activity for methanol dehydration was increased, and the selectivity for DME decreased slightly as reflected in the increased formation of byproducts like hydrocarbons and CO2. On the other hand, when the calcination temperature of SO42−/γ-Al2O3 increased from 350 °C to 550 °C, both the CO conversion and the DME selectivity increased gradually, accompanied with the decreased formation of CO2. Nevertheless, a further increase in calcination temperature to 750 °C remarkably decreased the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration, resulting in the significant decline in both DME selectivity and CO conversion. The hybrid catalyst containing the SO42−/γ-Al2O3 with 10 wt.% sulfate and calcined at 550 °C exhibited the highest selectivity and yield for the synthesis of DME.  相似文献   

4.
Since H2O2 decomposition can result in selectivity/yield loss in the direct H2O2 synthesis process from H2 and O2 over supported Pd catalysts, it is important to have an enhanced understanding about the factors affecting the H2O2 decomposition reaction. Herein, detailed studies have been undertaken to investigate the influence of different factors, such as (a) nature and concentration of acid in reaction medium, (b) nature and concentration of halide in presence and absence of acid in reaction medium, (c) pretreatment procedures and (d) catalyst modification by incorporation of different halides, on the H2O2 decomposition reaction over a 5% Pd/C catalyst in aqueous medium at 25 °C. This study has shown that the H2O2 decomposition activity is profoundly influenced by all the above factors. The effectiveness of the acids in suppressing the H2O2 decomposition activity decreased in the following order: hydroiodic acid > hydrobromic acid > hydrochloric acid  acetic acid > phosphoric acid > sulfuric acid > perchloric acid. The ability of the acid to decrease the H2O2 decomposition activity was found to very strongly depend on the nature of its associated anion. Halides, such as iodide, bromide and chloride were particularly effective in suppressing the H2O2 decomposition activity. Oxidation pretreatment of the catalyst was found to strongly suppress its H2O2 decomposition activity, while a reduction treatment was found to promote its activity. A gradual decrease in the H2O2 decomposition activity of the catalyst was observed with each successive usage due to in situ sub-surface oxidation of Pd by H2O2. Halide incorporation either via the reaction medium or prior catalyst modification had a similar qualitative effect on the H2O2 decomposition activity.  相似文献   

5.
The mononuclear [Mn(indH)Cl2](CH3OH) (indH: 1,3-bis(2′-pyridylimino)-isoindoline) complex has been prepared and characterized by various techniques such as elemental analysis, IR, UV–vis, ESR spectroscopy and X-ray diffraction. The title compound in the presence of a base such as 1-methylimidazole, imidazole or pyridine is efficient catalyst for the disproportionation of H2O2 in CH3CN. Among the various nitrogenous bases investigated in this study imidazole and substituted imidazoles with strong π-donating ability show better co-catalytic effect.

In case of aqueous solution the complex [Mn(indH)Cl2](CH3OH) shows much higher catalytic activity, and the initial rate of the disproportionation of H2O2 increases with increasing pH and goes through a maximum, which was found at pH  9.6. In this pH value the reaction shows first-order dependence on the catalyst, and saturation kinetics on [H2O2] with Vmax = 8.1 × 10−3 Ms−1, KM = 489 mM, kcat = 38 ± 2 s−1 and k2(kcat/KM) = 79 ± 4 M−1s−1.  相似文献   


6.
Sintering behavior and bioactivity of diopside, CaMgSi2O6, prepared by a coprecipitation process were examined for its biomedical applicability. As-prepared powder was synthesized by adding aqueous ammonia to an ethanol solution containing Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, and Si(OC2H5)4 and characterized by means of TG–DTA, XRD, and TG–MS. The dried powder was X-ray amorphous and crystallized into diopside at 845.5 °C. The glass network formation by SiO4 tetrahedra was almost completed below 800 °C. The bioactivity of the diopside prepared by sintering the compressed powder at 1100 °C for 2 h was evaluated by immersion of the sintered body in a simulated body fluid (SBF) at 36.5 °C. Leaf-like apatite particles were found to be formed on the surface of the sintered body and grew with passage of soaking time. This apatite-forming behavior in the SBF is related to the dissolution of Ca(II) ions from the sintered body in the early stage of immersion. Thus, diopside prepared by the coprecipitation process using the metal alkoxide and the metal salts was found to have an apatite-forming ability.  相似文献   

7.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

8.
The hetro-structured oxide thin films from metal fluorocomplex solution have been prepared by the liquid phase deposition (LPD) method. The Pt/Nb2O5 and Au/Nb2O5 composite films can be prepared from a mixed solution of niobium source, H3BO3, Pt(NH3)4Cl2 and HAuCl4 aqueous solutions under the ambient temperature and atmosphere. In the case of Au/SiO2 composite film, (NH4)2SiF6 solution is used as a mother solution. The Pt and Au ionic species are deposited in Nb2O5 and SiO2 matrices. They are reduced to their metallic state after treatment above 200 °C. The size of dispersed particles can be controlled by heat treatment temperature. It is also clear that, gold nanoparticles are also found to interact with SiO2, although the interaction is smaller than that with Nb2O5 showing the size of Au nanoparticles remain smaller in Nb2O5 that in SiO2.  相似文献   

9.
Kicela A  Daniele S 《Talanta》2006,68(5):1632-1639
The performance of a series of platinum black coated microdisk electrodes (Pt-Bs) was investigated in H2O2 solutions over the concentration range 0.1–500 mM, in phosphate buffer media pH 7. The Pt-Bs were prepared by electrodeposition of Pt onto the surface of microdisk electrodes 12.5 μm of nominal radius, from aqueous solutions containing hexachloroplatinic acid. The resulting roughness factors (RF, i.e., the ratio of the effective surface area to the geometric electrode area) varied between about 10 and 100. The voltammograms recorded with these electrodes, at relatively low H2O2 concentrations (up to 50–100 mM), displayed rather steep mixed anodic–cathodic waves, which attained well-defined and stable current plateaus. At the higher hydrogen peroxide concentrations, additional waves both in the anodic and cathodic region or dramatic current drop phenomena were observed. The wave split phenomenon was attributed to the insufficient buffering capacity of the base electrolyte solution within the pores of the platinum black, induced by the large amounts of hydrogen ions produced in the oxidation process. The current drop was attributed to either the formation of oxygen bubbles, which limit diffusion of H2O2 down the pores, or saturation of the active sites responsible for the decomposition of H2O2 to O2 and H2O. The H2O2 concentration at which the above phenomena occurred depended either on the phosphate buffer concentration in the bulk solution or the RF factor of the electrodes. The latter conditions also affected the dynamic range of detection, the sensitivity and low detection limits. Advantageous analytical characteristics were obtained with a Pt-B of RF of about 24, which provided a dynamic range between 0.5 and 230 mM, a sensitivity of 1.93(±0.06) A M−1 cm−2 and a low detection limit of 0.05 mM. The reproducibility was also very good, it being within 2–3%. The usefulness of the Pt-Bs for real samples analysis was tested in an antiseptic solution containing large amounts of H2O2.  相似文献   

10.
W.M. Shaheen   《Thermochimica Acta》2008,470(1-2):18-26
The effects of calcination temperature and doping with K2O on solid–solid interactions and physicochemical properties of NiO/Fe2O3 system were investigated using TG, DTA and XRD techniques. The amounts of potassium, expressed as mol% K2O were 0.62, 1.23, 2.44 and 4.26. The pure and variously doped mixed solids were thermally treated at 300, 500, 750, 900 and 1000 °C. The catalytic activity was determined for each solid in H2O2 decomposition reaction at 30–50 °C. The results obtained showed that the doping process much affected the degree of crystallinity of both NiO and Fe2O3 phases detected for all solids calcined at 300 and 500 °C. Fe2O3 interacted readily with NiO at temperature starting from 700 °C producing crystalline NiFe2O4 phase. The degree of reaction propagation increased with increasing calcination temperature. The completion of this reaction required a prolonged heating at temperature >900 °C. K2O-doping stimulates the ferrite formation to an extent proportional to its amount added. The stimulation effect of potassium was evidenced by following up the change in the peak height of certain diffraction lines characteristic NiO, Fe2O3, NiFe2O4 phases located at “d” spacing 2.08, 2.69 and 2.95 Å, respectively. The change of peak height of the diffraction lines at 2.95 Å as a function of firing temperature of pure and doped mixed solids enabled the calculation of the activation energy (ΔE) of the ferrite formation. The computed ΔE values were 120, 80, 49, 36 and 25 kJ mol−1 for pure and variously doped solids, respectively. The decrease in ΔE value of NiFe2O4 formation as a function of dopant added was not only attributed to an effective increase in the mobility of reacting cations but also to the formation of potassium ferrite. The calcination temperature and doping with K2O much affected the catalytic activity of the system under investigation.  相似文献   

11.
Offwhite pure Fe_2P_2O_7 was synthesized through solid phase reaction using Fe_2O_3 and NH_4H_2PO_4 in argon atmosphere.The reaction products of Fe_2O_3 and NH4_H_2PO_4 at a series of temperatures from 400 to 900℃were characterized by XRD.Comparison and analysis of XRD patterns of resultant products indicated well-crystallized Fe_2P_2O_7 could be obtained over 630℃and Fe_2P_2O_7 prepared at 700℃was triclinic in cell type.Comparison of the cell parameters proved that the as-prepared Fe_2P_2O_7 belonged toβ- Fe_2P_2O_7 in crystal phase and SEM showed its size distribution was 0.5-2μm.  相似文献   

12.
Three hydrated uranyl arsenates, (UO2)3(AsO4)2 · 11 H2O, UO2HAsO4 · 4 H2O, and UO2(H2AsO4)2 · 1 H2O, have been prepared. The dehydration of these compounds has been studied by thermal analysis. Three crystalline anhydrous uranyl arsenates, (UO2)3(AsO4)2, (UO2(AsO3)2, have been found. These show melting phenomena and lose arsenic oxide vapour at high temperatures to result, finally, in U3O8 at 1500°C in air. The anhydrous compounds have been prepared under isothermal conditions and the strongest X-ray reflections are given. A tentative phase diagram in the composition range UO3 to As2O5 has been constructed.  相似文献   

13.
Hydrated strontium borate, SrB4O7·3H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG and chemical analysis. The molar enthalpy of solution of SrB4O7·3H2O in 1 mol dm−3 HCl(aq) was measured to be (21.15 ± 0.29) kJ mol−1. With incorporation of the previously determined enthalpies of solution of Sr(OH)2·8H2O(s) in [HCl(aq) + H3BO3(aq)] and H3BO3 in HCl(aq), and the enthalpies of formation of H2O(l), Sr(OH)2·8H2O(s) and H3BO3(s), the enthalpy of formation of SrB4O7·3H2O was found to be −(4286.7 ± 3.3) kJ mol−1.  相似文献   

14.
Two new dinuclear oxo-bridged peroxo complexes of tungsten with coordinated dipeptides of the type, Na2[W2O3(O2)4(glycyl-glycine)2] · 3H2O (1) and Na2[W2O3(O2)4(glycyl-leucine)2] · 3H2O (2) have been synthesized from the reaction of H2WO4, 30% H2O2 and the respective dipeptide at pH ca. 2.5. Synthesis of the compounds, in addition to pH, is sensitive to reaction temperature and concentrations of the components. The compounds were characterized by elemental analysis, spectral and physico-chemical methods including thermal analysis. In the dimeric complexes the two W(VI) centres with edge bound peroxo groups are bridged by an oxo group. The dipeptides occurring as zwitterions bind the metal centers through O (carboxylate) atoms leading to hepta co-ordination around each W(VI). Thermal stability of the compounds as well as their stability in solution were determined. The compounds are highly stable toward decomposition in solutions of acidic as well as physiological pH. These compounds, besides another similar dimeric compound Na2[W2O3(O2)4(cystine)] · 4H2O (3) efficiently oxidized bromide to a bromination competent intermediate in phosphate buffer at physiological pH, a reaction in which only two of the peroxide groups of the complex species were found to be active. The complexes could also mediate bromination of organic substrate in aqueous-organic media.  相似文献   

15.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

16.
对Y(NO3)3·6H2O的差热和热重分析表明,Y(NO3)3·6H2O经脱水和热分解在580C以上完全分解为Y2O3.在此基础上,以Y(NO3)3·6H2O为前驱体,采用喷雾热解过程制备出粒度为0.50~1.50μm的立方相球形Y2O3粉末.通过对产物粒子粒度的理论计算与实验结果的比较,推测Y2O3粒子形成机理符合液滴-粒子转变机理(One-Droplet-One-Particlemechanism).本喷雾热解过程同样适用于其它稀土超细粉末的制备,粒子粒度可以通过调节液滴尺寸和溶液浓度等操作条件进行控制.  相似文献   

17.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium H3O+(aq) + 1· Na+(nb)  1·H3O+(nb) + Na+(aq) taking place in the two-phase water–nitrobenzene system (1 = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (H3O+, 1·Na+) = −0.6 ± 0.1. Further, the stability constant of the 1·H3O+ complex in water saturated nitrobenzene was calculated for a temperature of 25 °C as log βnb (1·H3O+) = 6.8 ± 0. 2. By using quantum mechanical DFT calculations, the most probable structure of the 1·H3O+ complex species was predicted. In this complex, the hydroxonium ion H3O+ is bound partly to three carbonyl oxygen atoms by strong hydrogen bonds and partly to three alternate phenoxy oxygens by somewhat weaker hydrogen bonds.  相似文献   

18.
T. Uma  M. Nogami   《Journal of membrane science》2006,280(1-2):744-751
A new class of proton conducting glass membranes for hydrogen fuel cell applications are being developed using phosphotungstic acid. These glasses are being design to yield high proton conductivities could be potential substitutes for electrolytes in H2/O2 fuel cell. P2O5–SiO2–PWA glasses have been non-crystalline phases confirmed by structural studies. The glass materials showed good mechanical and thermal stability, and also found a maximum proton conductivity of 9.1 × 10−2 S/cm at 90 °C and 30% RH. The average pore size less than 5 nm was determined by Barrett–Joyner–Halenda (BJH) desorption method. The electrochemical activity was investigated by polarization curves and current–voltage profiles. A maximum power density value of 10.2 mW/cm2 was obtained using 0.15 mg/cm2 of Pt/C loaded on electrode and 5P2O5–87SiO2–8PWA glasses at 30 °C and 30% humidity.  相似文献   

19.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

20.
In this paper, we summarise our recent research interest in the hydrothermal synthesis and structural characterisation of multi-dimensional coordination polymers. The use of N-(phosphonomethyl)iminodiacetic acid (also referred to as H4pmida) in the literature as a versatile chelating organic ligand is briefly reviewed. This molecule plays an important role in the formation of centrosymmetric dimeric [V2O2(pmida)2]4− anionic units, which were first used by us as building blocks to construct novel coordination polymers. Starting with [V2O2(pmida)2]4− in solution, we have isolated [M2V2O2(pmida)2(H2O)10] species (where M2+ = Mn2+, Co2+ or Cd2+) via the hydrothermal synthetic approach, which were then employed for the construction of [CdVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5·(H2O), [CoVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5, [Co(H2O)6][CoV2O2(pmida)2(pyr)(H2O)2]·2(H2O) and [Cd2V2O2(pmida)2(pyr)2(H2O)4]·4(H2O) by the inclusion of bridging organic ligands in the reactive mixtures, such as pyrazine (pyr) and 4,4′-bipyridine (4,4′-bpy). These materials can contain channel systems, and exhibit magnetic behaviour, not only due to the V4+ centres but also to the transition metal centres which establish the links between neighbouring dimeric [V2O2(pmida)2]4− anionic units. A closely related anionic moiety, [Ge2(pmida)2(OH)2]2−, was engineered to allow the study of such crystalline hybrid materials using one- and two-dimensional high-resolution solid-state NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号