首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low-cost, a high-yielding of vanadium oxide nanobelts 2 was simply synthesized by hydrothermal treatment of our (NH4)2V3O8, 1, with deionized water at 200 °C for 3 days. The SEM observations show that ribbon-like nanobelts are about 150–300 nm wide and thousands of nanometers long. The XRD pattern reveals a set of the paper form reflections, characteristic of (001) reflections for layered phases. Based on FT-IR results and the EDX spectra, the chemical formula of the as-obtained ribbon-like could be described as VxOy.nH2O with a mixed valence V(V) and V(IV).  相似文献   

2.
Uniform one‐dimensional V2O5@polyaniline core/shell nanobelts have been fabricated by a simple in‐situ polymerization method in the absence of any surfactant and additional initiator. The influences of pH and additional initiator on the morphology of the resulting products are investigated. The pH value is important for the formation of V2O5@polyaniline core/shell nanobelts, which preserve the original morphology of V2O5 nanobelts. With a decrease in the pH value to 0 the original morphology of the V2O5 nanobelts is destroyed. When ammonium peroxydisulfate is used, some separated polyaniline nanofibers are formed. The formation of the V2O5@polyaniline core/shell nanobelts can be related to the in‐situ polymerization of aniline monomer by etching V2O5 nanobelts. The electrochemical lithium intercalation/deintercalation of V2O5@polyaniline core/shell nanobelts is investigated by cyclic voltammograms.

  相似文献   


3.
《中国化学快报》2021,32(12):3793-3798
Ammonium vanadate has been considered as a competitive high-performance cathode material for aqueous Zn-ion batteries. However, it still suffers from insufficient rate capability and poor cyclability due to the low electronic conductivity. Herein, (NH4)2V6O16·0.9H2O nanobelts with reduced graphene oxide (RGO) modification are synthesized by one-step hydrothermal reaction. Benefiting from the addition of RGO, an excellent electrochemical performance of (NH4)2V6O16·0.9H2O@RGO nanobelts can be obtained. The (NH4)2V6O16·0.9H2O@RGO displays a high-rate capacity and a high energy density of 386 Wh/kg at 72 W/kg. In particular, after 1000 cycles at 5 A/g, the capacity remains at 322 mAh/g with 92.8% capacity retention. In addition, the key reaction mechanisms of reversible Zn2+insertion/extraction in (NH4)2V6O16·0.9H2O@RGO are clarified.  相似文献   

4.
The controlled synthesis of Co3O4 nanostructures with morphologies of micro-spheres, nanobelts, and nanoplates was successfully achieved by a simple solvothermal method. Various comparison experiments showed that several experimental parameters, such as the reaction temperature and the concentration of NH3·H2O, play important roles in the morphological control of Co3O4 nanostructures. A lower temperature and a lower concentration of NH3·H2O favor spherical products with a diameter of 1–1.5 μm, whereas a higher temperature and a higher concentration of NH3·H2O generally lead to the formation of nanobelts with a width of 20–150 nm. In addition, Co3O4 hexagonal nanoplates with an edge length of about 200–300 nm are also obtained by adding surfactant CTAB. A rational mechanism is proposed for the selective formation of various morphologies. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.  相似文献   

5.
Palladium(II) have been immobilized into the nano magnetic Fe3O4 which was functionalized with glucose in order to achieve a one‐pot synthesis of 2‐substituted benzoxazole derivatives with high yields in the diverse range of organic solvents. The nano catalyst is highly dispersive in polar solvents and can be easily recovered and reused for 6 runs without significant loss of its activity. Finally, the catalyst was fully characterized by FT‐IR, TGA, CHN, SEM, EDX and atomic absorption spectroscopy.  相似文献   

6.
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

7.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

8.
A simple low temperature hydrothermal method was found to yield Na0.28V2O5 nanobelts after two days at 130 °C in acidic medium (H2SO4) without using any surfactant. The obtained products were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), and Raman spectroscopy. Their morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, their electrochemical behavior in a lithium battery was investigated. The XRD pattern shows that the product is composed of monoclinic Na0.28V2O5 nanobelts. From the FTIR spectrum, the band centered at 961 cm–1 is assigned to V=O stretching vibration, which is sensitive to intercalation and suggests that Na+ ions are inserted between the vanadium oxide layers. SEM/TEM analyses reveal that the products consist of a large quantity of nanobelts which have a thickness of 60–150 nm and a length of several tens of micrometers. The electrochemical results show that the nanobelts exhibit an initial discharge specific capacity of 390 mAh · g–1, and its stabilized capacity still remained around 200 mAh · g–1 after the 18th cycle.  相似文献   

9.
The platinum(Ⅱ) terpyridyl acetylide complex [Pt(terpy)(C≡CR)]ClO4 (terpy=2,2‘ : 6‘2“-terpyridine, R=CH2CH2CH3) (1) was incorporated into Nation membranes. At high loading the dry membranes exhibit intense photoluminescence with λmax at 707 nm from the ^3MMLCT state, which was not observed in fluid solution. Upon exposure to the vapor of polar volatile organic compounds (VOC), this photoluminescence was significantly red-shifed. This process was fully reversible when the VOC-incorporated membrane was dried in air. The dramatic and reversible changes in the emission spectra made the Nation-supported complex as an interesting sensor candidate for polar VOC.  相似文献   

10.
We report a facile chemical approach for the synthesis of one-dimensional V2O5/TiO2 core–shell nanobelts. The coated V2O5 nanobelts are synthesized by a hydrothermal method which is feasible for large-scale production. V2O5 nanobelts coated with a thin layer of TiO2 sol are formed before sintering, and after sintering one-dimensional V2O5/TiO2 core–shell nanobelts, composed of single-crystalline V2O5 nanobelts cores uniformly coated with anatase TiO2 nanoparticle shells are obtained. The influences of the synthetic parameters, such as sintering temperature and titanium/vanadium mole ratios, on the morphology of the resulting products are investigated. Interestingly, the shape of single-crystalline of V2O5 nanobelts is totally preserved after sintering; the morphology can be readily controlled to be smooth or rough by altering the sintering temperature of the shells and titanium/vanadium mole ratio.  相似文献   

11.
《中国化学会会志》2017,64(5):557-564
Novel Li3V2 (PO4)3 nanobelts, which was confirmed by the peaks of X‐ray diffraction, were prepared by a facile and environmentally friendly electrospinning method. A distinct nanobelt structure, with an average width of 2.5 µm and a thickness of 200 nm, is observed by scanning electron microscopy (SEM), while the specific surface area of 140.8 m2/g is estimated by a specific surface area analyzer. Moreover, the unique Li3V2(PO4)3 nanobelts exhibited a specific discharge capacity of 155.6 mAh/g at 0.2 C rate when they were used as cathode material in lithium‐ion batteries, on testing from 3.0 to 4.8 V. Remarkably, the batteries containing Li3V2(PO4)3 nanobelts displayed excellent cycling performance, with only a 0.02% fading rate per cycle after 50 cycles in the range 30–4.3 V. These outstanding electrochemical performances could be ascribed to the particular morphology, large surface area, homogeneous particle size distribution, and the one‐dimensional microstructure of Li3V2(PO4)3 nanobelts.  相似文献   

12.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

13.
Selective-controlled structure and shape of ammonium vanadate nanocrystals were successfully synthesized by a simple hydrothermal method without the presence of catalysts or templates. It was found that tuning the pH of the growth solution was a crucial step for the control of the phase-compositional, structure and morphology transformation. The final products were NH4V4O10 nanobelts, (NH4)2V6O16·1.5H2O nanowires, and (NH4)6V10O28·6H2O nanobundles, respectively, when the pH of the growth solution varied from 2.5 to 1.5, then to 0.5. The hydrogen bonding interaction and the surface free energies were responsible for the formation of the ammonium vanadates with the different structure and morphology. The conductivity measurements showed the one-dimensional (1D) ammonium vanadates were semiconductors at room temperature. The conductivity of 1D ammonium vanadates varied from 1.95×10−4 to 2.45×10−3 S cm−1 due to the different structures.  相似文献   

14.
Poly(vinyl pyrrolidone) (PVP)/[Ti(SO4)2 + Al(NO3)3] composite nanobelts were prepared via electrospinning technology, and TiO2/Al2O3 nanobelts were fabricated by calcination of the prepared composite nanobelts. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD results show that the composite nanobelts were amorphous in structure, and pure phase TiO2/Al2O3 nanobelts were obtained by calcination of the relevant composite nanobelts at 950°C for 8 h. SEM analysis indicates that the surface of as-prepared composite nanobelts was smooth, the widths of the composite fibers were in narrow range, and the mean width was ca. 8.9 ± 2.1 μm, thickness was about 255 nm, and there is no cross-linking among nanobelts. The width of TiO2/Al2O3 nanobelts was ca. 1.3 ± 0.1 μm and the thickness was about 105 nm. TG-DTA analysis reveals that the N,N-dimethylformamide (DMF), organic compounds and inorganic salts in the composite nanobelts were decomposed and volatilized totally, and the weight of the sample kept constant when sintering temperature was above 900°C, and the total weight loss percentage was 81%. FTIR analysis manifests that crystalline TiO2/Al2O3 nanobelts were formed at 950°C. The possible formation mechanism of the TiO2/Al2O3 nanobelts was preliminarily discussed.  相似文献   

15.
A novel organic-inorganic hybrid polyoxovanadate, [Ni(bpp)2]2(V4O12) (bpp= 1,3-bi-4-pyridylpropane), was hydrothermally synthesized from a mix.ture of NiCl2*6H2O, NH4VO3, bpp, EtOH and H2O. The crystal structure consists of ∞^2[Ni(bpp)2]^2+, two-dimensional networks interpenetrating perpendicularly with each other, and (V4O12)^4-, cyclic tetranuclear clusters linking the ∞^2[Ni(bpp)2]^2+ networks to form a three-dimensional coordination framework. The crystal belongs to tetragonal space group I41/a with unit cell parameters, a= 2.14705 nm, c= 1.29293 nm. UV-Vis-NIR reflectance spectroscopy study revealed insulator nature for the crystal with an optical energy gap of 2.70 eV.  相似文献   

16.
In this study, the facile synthesis of SnO2 quantum dot (QD)-garnished V2O5 nanobelts exhibiting significantly enhanced reversible capacity and outstanding cyclic stability for Li+ storage was achieved. Electrochemical impedance analysis revealed strong charge transfer kinetics related to that of V2O5 nanobelts. The SnO2 QD-garnished V2O5 nanobelts exhibited the highest discharge capacity of ca. 760 mAhg−1 at a density of 441 mAg−1 between the voltage ranges of 0.0 to 3.0 V, while the pristine V2O5 nanobelts samples recorded a discharge capacity of ca. 403 mAhg−1. The high capacity of QD-garnished nanobelts was achieved as an outcome of their huge surface area of 50.49 m2g−1 and improved electronic conductivity. Therefore, the as-presented SnO2 QD-garnished V2O5 nanobelts synthesis strategy could produce an ideal material for application in high-performance Li-ion batteries.  相似文献   

17.
Mussel‐inspired polydopamine (PDA) deposition offers a promising route to fabricate multifunctional coatings for various materials. However, PDA deposition is generally a time‐consuming process, and PDA coatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report a strategy to realize the rapid deposition of PDA by using CuSO4/H2O2 as a trigger. Compared to the conventional processes, our strategy shows the fastest deposition rate reported to date, and the PDA coatings exhibit high uniformity and enhanced stability. Furthermore, the PDA‐coated porous membranes have excellent hydrophilicity, anti‐oxidant properties, and antibacterial performance. This work demonstrates a useful method for the environmentally friendly, cost‐effective, and time‐saving fabrication of PDA coatings.  相似文献   

18.
Solubility and stability of (NH4)2SO4·H2O2 in organic solvents (glycerol, ethylene glycol, TOSOL-A40 OM antifreeze), in mixtures of an organic solvent and water, and in pure water was studied. Crystallographic properties of the ammonium sulfate precipitating from aqueous-organic solvents and aqueous solutions in various time intervals and differing from ordinary (NH4)2SO4 in solubility and one of crystallographic parameters were analyzed.  相似文献   

19.
Searching for novel anode materials to address the issues of poor cycle stability in the aqueous lithium-ion battery system is highly desirable. In this work, ammonium vanadium bronze (NH4)2V7O16 with brick-like morphology has been investigated as an anode material for aqueous lithium-ion batteries and Li+/Na+ hybrid ion batteries. The two novel full cell systems (NH4)2V7O16||Li2SO4||LiMn2O4 and (NH4)2V7O16||Na2SO4||LiMn2O4 both demonstrate good rate capability and excellent cycling performance. A capacity retention of 78.61 % after 500 cycles at 300 mA g−1 was demonstrated in the (NH4)2V7O16||Li2SO4||LiMn2O4 system, whereas no capacity attenuation is observed in the (NH4)2V7O16||Na2SO4||LiMn2O4 system. The reaction mechanisms of the (NH4)2V7O16 electrode and impedance variation of the two full cells were also researched. The excellent cycling stability suggests that layered (NH4)2V7O16 can be a promising anode material for aqueous rechargeable lithium-ion batteries.  相似文献   

20.
《中国化学快报》2023,34(8):108572
Ammonium vanadate compounds featuring large capacity, superior rate capability and light weight are regarded as promising cathode materials for aqueous zinc ion batteries (AZIBs). However, the controllable synthesis of desired ammonium vanadates remains a challenge. Herein, various ammonium vanadate compounds were successfully prepared by taking advantage of ethylene glycol (EG) regulated polyol-reduction strategy and solvent effect via hydrothermal reaction. The morphology and crystalline phase of resultant products show an evolution from dendritic (NH4)2V6O16 to rod-like NH4V4O10 and finally to lamellar (NH4)2V4O9 as increasing the amount of EG. Specifically, the NH4V4O10 product exhibits a high initial capacity of 427.5 mAh/g at 0.1 A/g and stable cycling with a capacity retention of 90.4% after 5000 cycles at 10 A/g. The relatively excellent electrochemical performances of NH4V4O10 can be ascribed to the stable open-framework layered structure, favorable (001) interplanar spacing, and peculiar rod-like morphology, which are beneficial to the highly reversible Zn2+ storage behaviors. This work offers a unique way for the rational design of high-performance cathode materials for AZIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号