首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confined flow of polymer blends   总被引:1,自引:0,他引:1  
The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 microm, in the range of shear rates at which the transition from "bulk" behavior toward "confined" behavior is observed. For both cases, the influence of the concentration was systematically investigated, as well as the shear rate effects on the final steady-state morphology. By decreasing the shear rate, for each blend, the increasing droplets, i.e., increasing confinement for a fixed gap spacing, arrange themselves first into two layers, and when the degree of confinement reaches an even higher value, a single layer of droplets is formed. The ratio between the drop diameters and the gap spacing at which this transition occurs is always lower than 0.5. While decreasing the shear rate, the degree of confinement increases due to drop coalescence. Droplets arrange themselves in superstructures like ordered pearl necklaces and, at the lower shear rates, strings. The aspect ratio and the width of the droplet obtained from optical micrographs are compared to predictions of the single droplet Maffettone-Minale model (MM model(1)). It is found that the theory, meant for unconfined shear flow, is not able to predict the drop deformation when the degree of confinement is above a critical value that depends on the blends considered and the shear rate applied. A recently developed extension of the MM model is reported by Minale (M model(2)) where the effect of the confinement is included by using the Shapira-Haber correction.3 Further extending this M model, by incorporating an effective viscosity as originally proposed by Choi and Showalter,4 we arrive at the mM model that accurately describes the experiments of blends in confined flow.  相似文献   

2.
The influence of polydispersity on the interfacial kinetics of end-coupling and microstructure formation in the melt of immiscible polymers was studied using dissipative particle dynamics simulations. The irreversible reaction started at a flat interface between two layers, each of which contained polymer chains of two different lengths with functionalized or unreactive end groups. As in the case of fully functionalized monodisperse reactants [A. V. Berezkin and Y. V. Kudryavtsev, Macromolecules 44, 112 (2011)], four kinetic regimes were observed: linear (mean field coupling at the initial interface), saturation (decreasing the reaction rate due to the copolymer brush formation or reactant depletion near the interface), autocatalytic (loss of the initial interface stability and formation of a lamellar microstructure), and terminal (microstructure ripening under diffusion control). The interfacial instability is caused by overcrowding the interface with the reaction product, and it can be kinetically suppressed by increasing chain length of the reactants. Main effects of polydispersity are as follows: (i) the overall end-coupling rate is dominated by the shortest reactive chains; (ii) the copolymer concentration at the interface causing its instability can be not the same as in the lamellas formed afterwards; (iii) mean length of the copolymer product considerably changes with conversion passing through a minimum when a microstructure is just formed.  相似文献   

3.
The deformation in uniaxial elongational flow of dispersed droplets in immiscible molten polymer blends was studied for negligible interfacial tension and for viscosity ratio p = η(drop)/η(matrix) between 0.005 and 13, with an original method based on quenching elongated specimens. Although drop deformation (drop major axis over initial diameter) was in the range 1 < λd < 5, a good overall agreement was found with the small deformation Newtonian theory, which predicts that the drop versus matrix deformation ranges from 5/3 to 0 when p increases from 0 to infinity. The theoretical prediction that for p lower than 1, the droplet should deform more than the faraway surrounding matrix, with a limiting ratio of 5/3 at vanishing droplet viscosity, was experimentally verified.  相似文献   

4.
The effect of simple shear flow on the phase behavior and morphology was investigated for both polystyrene/poly(vinyl methyl ether) (PS/PVME) and poly(methyl methacrylate)/poly(styrene‐co‐acrylonitrile) (PMMA /SAN‐29.5) blends, which have LCST (lower critical solution temperature)‐type phase diagram. The measurements were carried out using a special shear apparatus of two parallel glass plates type. The PS/PVME blends showed shear‐induced demixing and shear‐induced mixing at low and high shear rate values, respectively. In addition, the rotation speed and the sample thickness were found to have a pronounced effect on the phase behavior under shear flow. On the‐other hand, PMMA/SAN blend showed only shear‐induced mixing and the magnitudes of the elevation of the cloud points were found to be composition and molecular weight dependent. The morphology of the PMMA/SAN=75/25 blend indicated that shear‐induced mixing occurred at a critical shear rate value, below which the two phases were highly oriented and elongated in the flow direction.  相似文献   

5.
The small amplitude oscillations can be superimposed parallelly on steady shear flows. The resulting moduli provide information about time‐ and shear‐dependent microstructure. For this purpose, model blends composed of polydimethylsiloxane and polyisobutylene with the viscosity ratio of 7.9 and 0.25 are investigated. The resulting moduli are compared with the results derived from numerical calculation as well as analytical solutions, developed here by introducing the conditions under parallel superposition flow field into MM model. Good agreement is found in the interfacial contribution of the storage moduli for blend with low volume fraction. Moreover, detailed analysis on hydrodynamic interaction between droplets is given to explain the discrepancies. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 431–440, 2008  相似文献   

6.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed.  相似文献   

7.
In this work, the structure development in immiscible polymer blends in confined geometries is systematically investigated. Poly(dimethylsiloxane)/poly(isobutylene) blends with a droplet-matrix structure are subjected to simple shear flows. The confined environment is created by using a Linkam shearing cell in which the gap is systematically decreased to investigate the transition from "bulk" behavior toward "confined" behavior. Small-angle light scattering experiments in a confinement, which have not yet been reported in the literature, and also microscopy are used to observe the morphology development during steady-state shearing and relaxation. These experiments indicate that the size and relaxation of single droplets in a confined environment are still governed by the relations that describe the structure development in bulk situations. Yet, depending on the applied shear rates and blend concentrations, the droplets organize in superstructures such as pearl necklaces or extended superstrings in a single layer between the plates. These structures are stable under flow. To observe a single layer, a critical ratio of droplet size to gap spacing is required, but this ratio is clearly below the one already reported in the literature.  相似文献   

8.
Various morphologies can be realized via processing of incompatible polymer blends such as droplets or fibers in a matrix and stratified or cocontinuous structures as is shown for the model system polyethylene/polystyrene The structures induced are usually intrinsically unstable. Modelling of extrusion processes and continuous mixers yields expressions for the shear rate and shear stress but also for the limited residence time and the number of reorientations. These results could be combined with detailed knowledge of respectively distributive and dispersive mixing processes to predict the development of various morphologies as a function of time. Control of morphology is of utmost importance. In the case of droplets in a matrix, usually encountered in toughening of glassy polymers, the use of compatibilizers and/or reactions at the interphases is utilized. However, in designing specific morphologies i.e. structured polymer blends, fixation of intermediate morphologies before final processing is a prerequisite. Some preliminary results will be presented.  相似文献   

9.
The general principles of thermodynamic equilibrium in binary liquid systems are reviewed briefly, and extended to quasi-binary mixtures of polydisperse polymers. Molecular models allowing actual phase behaviour to be discussed in terms of molecular parameters are exposed to data on the system polystyrene/polyvinylmethylether. Disparity in size and share between the repeating units must be introduced to obtain reasonable agreement between theory and experiment. The neccessary introduction of the molar-mass distribution detracts from this agreement which makes clear that other aspects exist that must be taken into account. For example, cross association between repeating units has a marked effect on phase behaviour. Blends are subject to two kinds of thermodynamic aging which lead either to considerable mutual solubility in supposedly immiscible blends, or to metastable equilibria transforming into states of lower Gibbs energy. In both cases physical proerties of the blend will change with time.  相似文献   

10.
Theoretical models of the interfacial tension coefficient in polymer blends, v12, were evaluated. A new working relation was derived that makes it possible to compute v12 from the chemical structure of two polymers. The calculations involve determination of the dispersive, polar and hydrogen-bonding parts of the solubility parameter from the tabulated group and bond contributions. The computed values of v12 for 46 blends were found to follow the experimental ones with a reasonable scatter of ± 36%. Next, the experimental methods of v12-measurements were critically examined. Although many have been developed for low viscosity Newtonian fluids, most are irrelevant to industrial polymeric systems. For the present studies two were selected. Values of v12 were measured using the so-called “capillary breakup method,” and a newly developed method based on the retraction rate of deformed drop.  相似文献   

11.
By means of statistical thermodynamics we consider the effect of a diblock copolymer on the interface of a demixed homopolymer blend. In contrast to the usual case where the blocks are identical with the components of the homopolymers, we investigate the use of arbitrary blocks XY respective to the A-B blend. As examples, we calculate interfacial properties such as the interfacial tension and the width of the interface as well as the concentration profiles of the blocks. We expect a strong compatibilization effect if the blocks are sufficiently long and have a preferential repulsive interaction with one of the two homopolymers.  相似文献   

12.
We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids.  相似文献   

13.
14.
Among the different ways of recycling plastic wastes, one of the techniques used consists in processing these products without any preliminary separation of the different plastic families. The bad performances of the obtained materials lead to the use of emulsifiers. The work described in this study concerns the synthesis of emulsifiers prepared by chemical modification of polymers with ozone. This reaction produces the formation of peroxides which are then used to initiate the grafting of comonomers. According to this method, we obtain graft copolymers usable as emulsifiers in the elaboration of polymer blends. Those graft copolymers prepared according to this method improve mechanical performances of polymer blends.  相似文献   

15.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

16.
High-voltage electron microscopy was used to study the micromechanical processes of deformation directly on thin deformed samples of rubber-modified, high-impact polymers. In these polymers the microprocesses are closely connected with the initiation and formation of crazes. Craze formation with its effects on the fracture toughness are discussed in dependence on several important morphological factors, particularly on the rubber volume content, particle diameter, and particle diameter distribution.  相似文献   

17.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

18.
An outlook of the literature concerning surface studies of polymer blends is given. Attention is focused on both theoretical and experimental aspects, with emphasis on the importance of sample preparation procedures.  相似文献   

19.
The purpose of this work is to describe the application of new electron microscopy techniques to the study of polymer blends with very fine dispersion of phases (miscible blends). Blends of PVC with PMMA, PCL, POM and SAN were prepared by high temperature mixing on a two roll mill, or by solvent casting. Thin sections (or cast films) were investigated in the scanning transmission electron microscope and small phases were identified in most blends. The contrast was enhanced by electronic combination of bright and dark field signals, by an irradiation and staining technique and by differential mass loss. The specimens were further characterized by measurement of mass loss, resulting from electron beam damage. The non linear changes in the mass loss rate with concentration were interpreted as being influenced by partial solubility and molecular interactions.  相似文献   

20.
Dispersive mixing of immiscible polymer blends as well as polymer systems containing solids is achieved in compounding equipment at two stages of the system's processing experience: first, while one or more of the polymer components are melting, and second, after all polymer components have melted. That is, the first mode of dispersive mixing occurs during the melting mechanism of “dissipative mix melting” (Ref. 1), while the second is melt-melt mixing. During the compounding of a given blend system, there are a number of processing parameters that can be changed in order to improve mixing. These range from machine operating variables to the addition of processing aids. If such processing changes fail to produce the desired morphology, the most common change to consider is the screw geometry. This, in practice involves a trial and error procedure, or the use of an existing database built from prior experience. The role which the thermomechanical and rheological properties of the blend component play in dissipative mix melting and melt-melt mixing has not yet been well understood. The reason for this is that although most blend systems have components which are strongly non-Newtonian and strongly viscoelastic, the thinking and rules of thumb for mixing such materials has been heavily influenced by the analysis of G. I. Taylor (Ref. 2), who in 1932 addressed the phenomenon of the dispersion of a single Newtonian droplet by a Newtonian matrix flowing in laminar shear flow. This paper addresses the strong role that the rheology of blend components, under processing conditions, play in laminar dispersive mixing of polymer blends. From a practical point of view, if the dispersion mechanisms and rates of dispersion depend on the component rheology, then such knowledge can lead us to the selection of advantageous mixing element designs and processing conditions. The experimental results were obtained in dispersive mixing carried out in devices developed in the Polymer Mixing Study (Ref. 3). Such model devices include the Couette Flow Intensive Mixer (CIM) (Ref. 4), where a constant shear stress is applied on the blend components and the Twin Screw Mixing Element Evaluator (TSMEE) (Ref. 5), where the mixing flows are those encountered in actual mixing/compounding operations. The TSMEE will be described in the body of this paper together with its on- and off-line morphology determination capabilities and its in-line rheology sensor. The low-density polyethylene (LDPE) and polystyrene (PS) polymers studied were selected because they cover a wide spectrum of rheological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号