首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdate phosphates Na1?y Zr2(MoO4) y (PO4)3 ? y (y = 0, 0.25, 0.5) having the NaZr2(PO4)3 structure were prepared by the sol-gel method. The catalytic properties of the molybdate phosphates in dehydration and dehydrogenation of methanol in inert and oxidizing atmospheres were studied.  相似文献   

2.
Synthesis and ionic conductivity of Li3−2x Nb x Fe2−x (PO4)3 complex phosphates were studied by X-ray powder diffraction and impedance spectroscopy. These phosphates are formed only at 900–1000°C. Variations in their thermal expansivity and unit cell parameters induced by aliovalent doping were characterized. The conductivity of these materials increases monotonically in the series Li0.5Nb1.25Fe0.75(PO4)3-LiNbFe(PO4)3 and Li1.2Nb0.9Fe1.1(PO4)3-Li3Fe2(PO4)3, which is explained by consecutive occupation of the Li(1) and Li(2) positions in their structures. Original Russian Text ? A.R. Shaikhlislamova, I.A. Stenina, A.B. Yaroslavtsev, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 12, pp. 1957–1962.  相似文献   

3.
Substitutional solid solutions (Cu1−y Zn y )2(OH)PO4·xH2O (0 ≤ y ⩽ 0.26, x = 0.1−0.2), (Cu1−y Co y )2(OH)PO4·xH2O (0 ≤ y ≤ 0.10, x = 0.1−0.2), and (Cu1−y Ni y )2(OH)PO4·xH2O (0 ≤ y ≤ 0.08, x = 0.1−0.2) were synthesized. The unit cell parameters of the resulting phosphates were determined, and their IR absorption spectra were measured. The reactants were H3PO4 and mixtures of hydrous carbonates of the appropriate metals. Thermolysis of the solid solutions was examined with (Cu1−y Co y )2(OH)PO4·xH2O (0 ≤ y ≤ 0.10, x = 0.1−0.2) as an example.  相似文献   

4.
Phase relations have been investigated in the subsolidus region of the Na2MoO4-NiMoO4-Fe2(MoO4)3 system by X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. The phase of variable composition Na1−x Ni1−x Fe1+x (MoO4)3(0≤x≤0.5) with the NASICON structure (space group R c) and the NaNi3Fe(MoO4)5 ternary molybdate crystallizing in the triclinic crystal system (space group P ) have been obtained. A high conductivity was found in Na1−x Ni1−x Fe1+x (MoO4)3, which allows one to consider this phase of variable composition as a promising solid electrolyte with sodium ion conduction. Original Russian Text ? N.M. Kozhevnikova, A.V. Imekhenova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 4, pp. 695–700.  相似文献   

5.
The ternary salt systems M2MoO4−AMoO4−Zr(MoO4)2 (M=K, Tl; A=Mg, Mn, Ni, Co, Cu, Zn, Cd) in a sub-solidus region were studied. New ternary molybdates with the M5A0.5Zr1.5(MoO4)6 and MA0.5Zr0.5(MoO4)2 compositions were synthesized by solid-phase reactions in these systems. The crystallographic and thermal characteristics of the compounds were found. The electrical properties of potassium—manganese—zirconium molybdates were studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1036–1039, June, 1999.  相似文献   

6.
The homogeneity regions of Nd1 − x Ba x MnO3 (0.0 ≤ x ≤ 0.25) and NdMn1 − y Fe y O3 (0.0 ≤ y ≤ 1.0) orthorhombic solid solutions in air at 1373 K were determined. The region of the existence of Nd1 − x Ba x Mn1 − y Fe y O3 orthorhombic solid solutions in air at 1373 K was studied. A fragment of the phase diagram of the NdMnO3-BaMnO3-BaFeO2.5-NdFeO3 quasi-quaternary complex oxide system in air at 1373 K was suggested. The mechanothermal properties of Nd0.75Ba0.25MnO3, Nd0.8Ba0.2Mn0.9Fe0.1O3, Nd0.8Ba0.2Mn0.7Fe0.3O3, and Nd0.8Ba0.2Mn0.5Fe0.5O3 doped neodymium manganates were studied.  相似文献   

7.
Triple molybdate NaCoCr(MoO4)3, a phase of variable composition Na2MoO4-CoMoO4-Cr2(MoO4)3 (0 ≤ x ≤ 0.5) having nasicon structure (space group R $ \bar 3 $ \bar 3 c), and triple molybdate NaCo3Cr(MoO4)5 crystallizing in triclinic space group P $ \bar 1 $ \bar 1 were synthesized in the subsolidus region of the Na2MoO4-CoMoO4-Cr2(MoO4)3 ternary salt system. Crystal parameters were calculated for the newly synthesized molybdates and phases. The vibration spectra of Na1 − x Co1 − x Cr1 + x (MoO4)3 and electrophysical properties were studied. Upon Na + Co → Cr(III) substitution, chromium cations are distributed to cobalt sites and additional vacancies are generated in the sodium sublattice.  相似文献   

8.
This short review reports on the synthesis of nanosized electrode materials for lithium-ion batteries by mechanical activation (MA) and studies of their properties. Different structural types of compounds were considered, namely, compounds with a layered (LiNi1 − xy Co x Mn y O2), spinel (LiMn2O4, Li4Ti5O12), and framework (LiFePO4, LiTi2(PO4)3) structures. The compounds also differed in electronegativity, which varied from 10−4 S cm−1 for LiCoO2 to 10−9 S cm−1 for LiFePO4. The preliminary MA of mixtures of reagents in energy intensive mechanoactivators led to the formation of highly reactive precursors, and annealing of the latter formed nanosized products (the mean particle size is 50–200 nm). The local structure of the synthesized compounds and the composition of their surface were studied by spectral methods. An increase in the dispersity and defect concentration, especially in the region of the surface, improved some electrochemical characteristics. It increased the stability during cycling (LiMn2O4, at 3 V) and the regions of the formation of solid solutions during cycling (Li4Ti5O12, LiFePO4), led to growth of surface Li-ion conductivity (LiTi2(PO4)3), etc. The mechanochemical approach was also used for the synthesis of core-shell type composite materials (LiFePO4/C, LiCoO2/MeO x ) and materials based on two active electrode components (LiCoO2/LiMn2O4).  相似文献   

9.
The paper represents a listing of results obtained by developing the original methods of controlled synthesis of cluster and mono-, bi- and trimetallic oxo-alkoxide derivatives of rhenium and d-elements of V–VI groups. The developed techniques of the synthesis of metal alkoxides include: (1) anodic dissolution of the metals in the alcohol media; (2) direct reaction of the rhenium (VII) oxide with alkoxide derivatives of the transition elements. By such techniques were obtained: Re4O4(OEt)12, Re4O6(OiPr)10; individual rhenium alkoxocomplexes: Re4O2(OMe)16, Re4O6(OMe)12, Re4O6−y(OMe)12+y; bimetallic ReMoO2(OMe)7, Re4−xMoxO6−y(OMe)12+y, Re4−xWxO6−y(OMe)12+y; Nb2(OMe)8(ReO4)2, Ta2(OMe)8(ReO4)2, Nb4O2(OMe)14(ReO4)2, Ta4O2(OMe)14(ReO4)2, Nb4O2(OEt)14(ReO4)2, Ta4O2(OEt)14(ReO4)2, alkoxocomplexes: Nb2−xTax(OMe)8(ReO4)2, Nb4−xTaxO2(OMe)14(ReO4)2, Nb4−xTaxO2(OEt)14(ReO4)2. All compounds mentioned above are characterized with X-ray single crystal study, IR-spectroscopy, DTG. It has been shown, that thermal decomposition of alkoxide derivatives in inert or hydrogen atmosphere leads to formation nano-size powders of individual rhenium and its alloys at low temperature. Thermal decomposition in air leads to formation individual metal oxides or its solid solutions. It has been demonstrated that the alkoxide derivatives could be promising precursors for next generation catalysts manufacturing.  相似文献   

10.
Electrocatalytic oxygen reduction was studied on a RuxFeySez(CO)n cluster catalyst with Vulcan carbon powder dispersed into a Nafion film coated on a glassy carbon electrode. The synthesis of the electrocatalyst as a mixture of crystallites and amorphous nanoparticles was carried out by refluxing the transition metal carbonyl compounds in an organic solvent. Electrocatalysis by the cluster compound is discussed, based on the results of rotating disc electrode measurements in a 0.5 M H2SO4. A Tafel slope of −80.00±4.72 mV dec−1 and an exchange current density of 1.1±0.17×10−6 mA cm−2 was calculated from the mass transfer-corrected curve. It was found that the electrochemical reduction reaction follows the kinetics of a multielectronic (n=4e) charge transfer process producing water, i.e. O2+4H++4e→2H2O. Electronic Publication  相似文献   

11.
A new multi-component mineralizer is proposed which permits the synthesis of zircon pigments Zr1−y−zMoyCr z IV SiO4·xCr2O3 in an interesting green-brown hue.
Zusammenfassung Es wird ein neuer Mehrkomponenten-Mineralisator vorgeschlagen, der die Synthese von Zirkonpigmenten Zr1−y−zMoy IVCrz IVSiO4·xCr 2O3 in einem interessanten grün-braunen Farbton gestattet.
  相似文献   

12.
The synthesis conditions for variable-composition phase Na1−x Co1−x Fe1+x (MoO4)3, 0 ≤ x ≤ 0.4, crystallizing in the nasicon structure type (R $ \bar 3 $ \bar 3 c) were examined. For this phase, the crystallographic parameters were calculated, vibrational spectra were interpreted, and temperature dependence of electrical conductivity, dielectric constant, and dielectric loss tangent were examined.  相似文献   

13.
The composition of mixed-ligand complexes of cerium (III) and europium (III) acetates and pivalates with monoethanolamine (MEA) depends on the synthesis conditions and the nature of carboxylate ligand. We prepared solid complexes [Ln(Piv)3(MEA) x ], where Ln = Ce, Eu; HPiv-2,2-dimethylpropionic (pivalic) acid; x = 1, 1.5, and gel-like hydroxocomplexes [Ln(Carb) nxy ,(NO3) x (OH) y (MEA) w (H2O) z ], where Ln = Ce, n = 4; Ln = Eu, n = 3; HCarb is acetic acid (HAcet) or HPiv. The values of the coefficients x, y, w, and z depend on the synthesis conditions and heat treatment. Prepared compounds were characterized by IR and 1H NMR spectroscopies, elemental and thermal analyses, and MALDI-MS. The ESI-MS method was used to characterize the processes occurring in the solutions.  相似文献   

14.
Complex phosphates MxZr2.25–0.25x(PO4)3, where M=Li, Na,K, Rb or Cs and x may be an integer or fraction from 0 to 9, have been synthesized, and their structure has been investigated. The concentration and temperature ranges of stability of the phosphate phases NaZr2(PO4)3 have been found. The influence of the method for the synthesis of these phases and of the annealing temperature on their crystal properties is studied. It was found that the structure of NaZr2(PO4)3 [NZP] exists in the above phosphate series when 0≤x≤5 for Na and K, 0≤x≤3 for Rb, and 0≤x≤1 for Cs. N. I. Lobachevskii Nizhnii Novgorod State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 6, pp. 1104–1113, November–December, 1996. Translated by L. Smolina  相似文献   

15.
A multicomponent system of complex refractory oxides of the composition Zn2 − x (Zr a Sn b )1 − x Fe2x O4 (a + b = 1; a: b = 1: 5, 1: 4, 1: 3, 1: 2, 1: 1, 2: 1, 3: 1, 4: 1; x = 0−1.0; Δx = 0.05) was studied by X-ray diffraction. The samples were prepared from oxides of appropriate metals by low-temperature plasma synthesis (hydrogen-oxygen flame). Two phases with wide homogeneity ranges were identified: α phase crystallized in the crystal system of inverse cubic spinel and β phase with the structure of tetragonal spinel. The phase boundaries were found. Structural data are presented for about 100 solid solutions.  相似文献   

16.
Phase formation in the systems MO-ZrO2-P2O5 (M=Mg, Ca, Sr or Ba) with various ratios of M to Zr cations and within the temperature interval from 20 to 1200°C was investigated by means of DTA, TG, XRD and IR spectroscopy. The orthophosphate phases M0.5xZr2.25−0.25x(PO4)3 with x=0−1, 3 and 7 were synthesized. Concentration and temperature limits of phase existence were found for phosphates belonging in the NaZr2(PO4)3 structural family. They exist within the regions with M to Zr ratios of 0≤x≤1 (with the exception of the Mg phases) and in the temperature interval from room temperature to 900–1700°C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
A ruthenium-sulfur carbonyl cluster electrocatalyst, Ru x S y (CO) n , was synthesized by pyrolysis of Ru3(CO)12 and elemental sulfur in a sealed ampoule at 300 °C. The pyrolyzed compound was characterized by DSC, FT-IR, XRD and SEM (EDX) techniques. The electrocatalytic activity and kinetic parameters for the molecular oxygen reduction were determined by a rotating ring-disk electrode (RRDE) in a 0.5 M H2SO4 solution at 25 °C. The cathodic polarization indicates two Tafel slopes: −0.124 ± 0.002 V dec−1 at low and −0.254 ± 0.003 V dec−1 at high overpotentials, and first-order kinetics with respect to O2 concentration. From the analysis of Levich plots and RRDE results, the oxygen reduction on Ru x S y (CO) n was determined to proceed mostly via a multielectron transfer path (4e) to water formation ( >94%). Received: 4 March 1999 / Accepted: 26 May 1999  相似文献   

18.
Electrical conductivity, fluorite-type cubic unit cell volume and thermal expansion of the (Bi1− x Nb x )1− y Ho y O1.5+δ (x=0.05 and 0.08; y=0.10−0.15) and (Bi1− x Zr x )1− y Y y O1.5+δ (x=0.05 and 0.07; y=0.15) solid solutions have been found to decrease regularly with increasing dopant content. Annealing at temperatures below 900 K leads to a phase decomposition and to a sharp decrease in conductivity of the ceramics. Oxygen ion transference numbers have been determined by the e.m.f. method and by Faradaic efficiency measurement to exceed 0.9. A new technique of studying Faradaic efficiency has been proposed and verified using (Bi0.95Zr0.05)0.85Y0.15O1.5+δ and Zr0.90Y0.10O1.95 ceramic samples. Received: 31 October 1997 / Accepted: 18 December 1997  相似文献   

19.
The system ZrO(NO3)2-H3PO4-KF(HF)-H2O was studied at ∼20°C along sections at molar ratios of PO43− = 0.5, 1.0, and 1.6; KF: Zr = 1−5; and HF: Zr = 2−6. Phases in precipitates were identified by X-ray powder diffraction; IR spectroscopy; and crystal-optical, chemical, X-ray fluorescence and thermal analyses. The following crystalline phases were isolated: potassium fluorozirconates K3ZrF7, K2ZrF6, δ-KZrF5, and KZrF5 · H2O; zirconium hydrophosphate Zr(HPO4)2 · 0.5H2O; and potassium fluorophosphate zirconate K3Zr3F3(HPO4)3(PO4)2. The following amorphous basic oxo(hydroxo)fluorohydrophosphate nitrates were isolated: K4Zr4O2.5F8(HPO4)2(NO3)3 · 6H2O, K2Zr3O3F2(HPO4)2(NO3)2 · H2O, and KZr3O1.5F3(HPO4)2(NO3)3 · 2H2O. Fields of solid phases were constructed, and the roles of anions and cations in the phase formation were considered.  相似文献   

20.
This article describes recent developments in chemical study on a series of butterfly-shaped μ-CO-containing Fe/E (E = S, Se, Te) cluster salts. These salts include eleven novel cluster anions, which are the single butterfly one μ-CO-containing [(μ-RE)(μ-CO)Fe2(CO)6]- (A), the double butterfly two μ-CO-containing {[(μ-CO)Fe2(CO)6]2(μ-EZE-μ)}2- (B, E = S; C, E = Se), the triple butterfly three μ-CO- containing {[(μ-CO)Fe2(CO)6]3[(μ-SCH2CH2)3N]}3- (D), {[(μ-CO)Fe2(CO)6]3[1,3,5-(μ-SCH2)3C6H3]}3- (E), {[(μ- CO)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号