首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An all printed resistive memory device, a 9-bit memristor, has been presented in this study consisting of 3 × 3 memristor crossbars deposited via electrohydrodynamic inkjet printing process at room conditions. Transparent zinc oxide active nano-layers, directly deposited by electrospray process, are sandwiched between the crossbars to complete the metal–insulator metal structure consisting of copper–zinc oxide–silver, where Cu and Ag are used as bottom and top electrodes respectively. The 9-bit memristor device has been characterized using current–voltage measurements to investigate the resistive switching phenomenon thereby confirming the memristive pinched hysteresis behavior signifying the read–write and memory characteristics. The memristor device showed a current bistability due to the existence of metal–oxide layer which gives rise to oxygen vacancies upon receiving the positive voltage hence breaking down into doped and un-doped regions and a charge transfer takes place. The maximum ON/OFF ratio of the current bi-stability for the fabricated memristor was as large as 1 × 103, and the endurance of ON/OFF switchings was verified for 500 read–write cycles. The metal–insulator–metal structure has been characterized using X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope techniques.  相似文献   

2.
We report electrohydrodynamic jet (E-jet) printing of a commercialised silver nano-ink in fully voltage-controlled fashion. Metallic pads and conducting tracks with hundred-micron feature size were drop-on-demands produced on Si substrates. Layer-by-layer printing was further performed, demonstrating a capability in creating 3D multistructures. Planar pattern with a large inductance of 2.5 μH and an excellent resistivity of 4.2×10−8 Ω m was fabricated, showing a true inductive device. Our result demonstrates a feasibility of E-jet printing in the application of smart electronic devices fabrication.  相似文献   

3.
A transparent elastomer layer sandwiched between two metal electrodes deforms upon voltage application due to electrostatic forces. This structure can be used as tunable waveguide. We investigate structures of a polydimethylsiloxane (PDMS) layer with 1–30 μm thickness and 40 nm gold electrodes. For extended electrodes the effect size may be calculated analytically as a function of the Poisson ratio. A fully coupled finite-element method (FEM) is used for calculation of the position-dependent deformation in case of structured electrodes. Different geometries are compared concerning actuation effect size and homogeneity. Structuring of the top electrode results in high effect magnitude, but non-uniform deformation concentrated at the electrode edges. Structured bottom electrodes provide good compromise between effect size and homogeneity for electrode widths of 2.75 times the elastomer thickness.  相似文献   

4.
In this paper, multi-nozzle electrohydrodynamic (EHD) inkjet printing of a colloidal solution containing silver nanoparticles in a fully controlled fashion is reported. For minimizing interaction, i.e. cross-talk, between neighboring jets, the distance between the nozzles was optimized numerically by investigating the magnitude of the electric field strength around the tip of each nozzle. A multi-nozzle EHD inkjet printing head consisting of three nozzles was fabricated and successfully tested by simultaneously printing electrically conductive lines of a colloidal solution containing silver nanoparticles onto a glass substrate. The printed results show electrical resistivity of 5.05×10−8 Ω m, which is almost three times larger than that of bulk silver. These conductive microtracks demonstrate the feasibility of the multi-nozzle EHD inkjet printing process for industrial fabrication of microelectronic devices.  相似文献   

5.
杨帆  韦敏  邓宏  杨胜辉  刘冲 《发光学报》2014,35(5):604-607
以 ZnO:Al为底电极,Cu为顶电极,在同种工艺条件下分别制备了类电容结构的纯ZnO 阻变器件和ZnO:2%Cu阻变器件,分析比较了两种器件的典型I-V特性曲线、置位电压(VSet)和复位电压(VReset)的分布范围、器件的耐久性。结果显示,ZnO:Cu阻变器件较纯ZnO阻变器件有更大的开关比和更稳定的循环性能。另外,研究了 ZnO:Cu阻变器件的阻变机理,通过对其I-V特性曲线分析得出以下结论:ZnO:Cu阻变器件在高阻态遵循空间电荷限制电流效应,低阻态符合欧姆定律。  相似文献   

6.
Two kinds of ZnO nanotubes, including taper-like and flat-roofed tubes, have been successfully fabricated using a simple aqueous solution route by changing the experimental conditions. All the obtained nanotubes have a uniform size of 500 nm in diameter, 10–50 nm in wall thickness, and 2–5 μm in length. The growth mechanism of two kinds of ZnO nanotubes was investigated. Field emission measurements showed that tapering nanotubes have the good field emission performance with a low turn-on field of ∼ 2.1 V μm-1 and a low threshold field of ∼ 3.8 V μm-1, which suggests the possible applications of the ZnO tubular structures in field emission microelectronic devices. PACS 73.61.Ga; 73.63. Fg; 85.45.Db  相似文献   

7.
The various electrical properties and the nature of conduction mechanisms of magnesium phthalocyanine thin film devices with top and bottom aluminium electrodes have been investigated. The conduction mechanism was identified as injection limited essentially due to the electrode material. Even with the same electrode materials, the device showed asymmetric conduction behavior in the forward and reverse bias. In general the conduction was interpreted as a Schottky emission with barrier height Φs=1.07 eV for the forward bias and Φs=1.09 eV in the reverse bias. The effect of oxygen on the conductivity of the device has also been investigated. In the oxygen doped samples the conductivity is decreased which may be attributed to an interfacial layer between the electrode and the organic layer. Further in the oxygen doped sample while a Schottky emission is observed at lower voltages Poole-Frenkel conductivity was identified in the higher voltage region.  相似文献   

8.
Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.  相似文献   

9.
This paper reports that the organic field-effect transistors with hybrid contact geometry were fabricated, in which the top electrodes and the bottom electrodes were combined in parallel resistances within one transistor. With the facility of the novel structure, the difference of contact resistance between the top contact geometry and the bottom contact geometry was studied. The hybrid contact devices showed similar characteristics with the top contact configuration devices, which provide helpful evidence on the lower contact resistance of the top contact configuration device. The origin of the different contact resistance between the top contact device and the bottom contact device was discussed.  相似文献   

10.
This study employs RF magnetron sputter technique to deposit high C-axis preferred orientation ZnO thin film on silicon substrate, which is then used as the piezoelectric thin film for a thin film bulk acoustic resonator (FBAR). Electrical properties of the FBAR component were investigated by sputtering a ZnO thin film on various bottom electrode materials, as well as varying sputter power, sputter pressure, substrate temperature, argon and oxygen flow rate ratio, so that structural parameters of each layer were changed. The experimental results show that when sputter power is 200 W, sputter pressure is 10 mTorr, substrate temperature is 300 °C, and argon to oxygen ratio is 4:6, the ZnO thin film has high C-axis preferred orientation. The FBAR component made in this experiment show that different bottom electrode materials have great impact on components. In the experiment, the Pt bottom electrode resonant frequency was clearly lower than the Mo bottom electrode resonant frequency, because Pt has higher mass density and lower acoustic wave rate. The component resonant frequency will decrease as ZnO thin film thickness increases; when top electrode thickness is higher, its resonant frequency also drops, due to top electrode mass loading effect and increased acoustic wave path. Therefore, ZnO thin film and top/bottom electrode thickness can be fine-tuned according to the required resonant frequency.  相似文献   

11.
Flexible light emitting diodes are a promising component for future electronic devices, but require a simple structure and fast fabrication method. Organic light emitting diodes are a viable option as they are lightweight, thin, and flexible. However, they currently have costly fabrication procedures, complicated structures, and are sensitive to water and oxygen, which hinder widespread application. Here, we present a novel approach to fabricate flexible light emitting devices by employing Ag nanowire/polymer composite electrodes and ZnS phosphor particles. The composite electrode was fabricated using inverted layer processing, and used as both a bottom electrode and a dielectric layer. The high mechanical stability of the composite allowed the device to be free standing and mechanically flexible, eliminating the need for any additional support. Using Ag nanowires in both the top and bottom electrodes made a double-sided light emitting device that could be applied to wearable lightings or flexible digital signages.  相似文献   

12.
《Current Applied Physics》2020,20(3):431-437
Based on the bipolar resistive switching (RS) characteristics of SnO2 films, we have fabricated a new prototypical device with sandwiched structure of Metal/SnO2/fluorine-doped tin oxide (FTO). The SnO2 microspheres film was grown on FTO glass by template-free hydrothermal synthesis, which was evaporated with various commonly used electrodes such as aluminium (Al), silver (Ag), and gold (Au), respectively. Typical self-rectifying resistance switching behaviors were observed for the RS devices with Al and Au electrodes. However, no obvious rectifying resistance switching behavior was observed for the RS device with Ag electrode. Above results were interpreted by considering the different interface barriers between SnO2 and top metal electrodes. Our current studies pave the ways for modulating the self-rectifying resistance switching properties of resistive memory devices by choosing suitable metal electrodes.  相似文献   

13.
We have investigated the role of the metal/oxide junction interface on the resistive switching (RS) characteristics in WO3+x films. The WOx films are fabricated on Pt substrates by magnetron sputtering at room temperature. Top metal contact (Au or Al) is fabricated by using thermal evaporator. The thicknesses of WOx films and top electrodes are 1 μm and 200 nm, respectively. It has been found that the bi-polar RS direction is dependent on the choice of top metal electrode, Au or Al. The sample with a Au top electrode shows clockwise (CW) RS mode whilst the sample with a Al top electrode shows counter-clockwise (CCW) RS mode. The on/off ratio is 10 times for Au/WOx/Pt and 100 times for Al/WOx/Pt. The bi-polar RS modes are modeled in terms of the difference in the electronegativity of the top and bottom electrodes.  相似文献   

14.
A p-type ZnO thin film was prepared using arsenic diffusion via the ampoule-tube method. This was followed by fabrication of a ZnO p–n homojunction using n-type ZnO and characterization of the device properties. The ZnO thin film exhibited p-type characteristics, with a resistivity of 2.19×10−3 Ω cm, a carrier concentration of 1.73×1020/cm3, and a mobility of 26.7 cm2/V s. Secondary ion mass spectrometer analysis confirmed that in- and out-diffusion occurred simultaneously from the external As source and the GaAs substrate. The device exhibited the rectification characteristics of a typical p–n junction; the forward voltage at 20 mA was approximately 5.5 V. The reverse-bias leakage current was very low—0.1 mA for −10 V; the breakdown voltage was −11 V. The ampoule-tube method for fabricating p-type ZnO thin films may be useful in producing ultraviolet ZnO LEDs and other ZnO-based devices.  相似文献   

15.
This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.  相似文献   

16.
We have studied the effect of self-assembled monolayer (SAM) on the performance and bias-induced changes in bottom contact, inkjet printed organic thin-film transistors (OTFTs) with 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). The device was fabricated using the photo-definable photoacryl (PA) and silver (Ag) as gate insulator and source/drain metal electrodes, respectively. The SAM was formed by immersing the patterned Ag electrodes in pentafluorothiophenol (PFBT) solution or by spin coating of phenethyltrichlorosilane (PTS) on the substrate, and TIPS pentacene was inkjet printed at 90 °C. The OTFT with SAMs exhibited the field-effect mobility of 0.18 cm2/Vs and showed the stretched exponential decay with time constant of 1.13 × 107 s and exponential exponent of 0.28.  相似文献   

17.
Molecular electronic devices were fabricated with amino-style derivatives as redox-active components. These molecules are amphiphilic to allow monolayer formation by the Langmuir–Blodgett (LB) method, and this LB monolayer is inserted between two metal electrodes. On measuring the current–voltage (IV) characteristics, it was found that the Al/amino style LB monolayer/Al devices show remarkable hysteresis and switching behavior, so that they can be used as memory devices at ambient conditions, when an aluminum oxide layer exists on the bottom electrode. From the results of IV measurements, we acquired values of the switching voltage and some large on/off ratios in the case of the ASBC-18 molecule. Also, we improved the yield of the molecular electronic device by reducing the area of the device and by inserting a Ti protecting layer between the top metal electrode and the amino style LB monolayer.  相似文献   

18.
下电极对ZnO薄膜电阻开关特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李红霞  陈雪平  陈琪  毛启楠  席俊华  季振国 《物理学报》2013,62(7):77202-077202
本文采用直流磁控溅射法在三种不同的下电极(BEs)上制备了ZnO薄膜, 获得了W/ZnO/BEs存储器结构. 研究了不同的下电极材料对器件电阻开关特性的影响. 研究结果表明, 以不同下电极所制备的器件都具有单极性电阻开关特性. 在低阻态时, ZnO薄膜的导电机理为欧姆传导, 而高阻态时薄膜的导电机理为空间电荷限制电流. 不同下电极与ZnO薄膜之间的肖特基势垒高度对电阻开关过程中的操作电压有较大的影响, 并基于导电细丝模型对不同下电极上ZnO薄膜的低阻态阻值及reset电流的变化进行了解释. 关键词: ZnO薄膜 电阻开关 下电极  相似文献   

19.
In this study, P3HT:PCBM organic photovoltaic (OPV) devices, with or without ZnO nanoparticles buffer layer between the photoactive layer (P3HT:PCBM) and the cathode (Al top electrode), were fabricated. The devices were annealed at 145 °C either before or after depositing the top electrode. The objective of this study was to investigate the effects of the ZnO buffer layer and pre-/post-fabrication annealing on the general performance of these devices. The short-circuit current density (JSC), open-circuit voltage (VOC) and the external quantum efficiency (EQE) of the OPV devices were improved by the insertion of the ZnO layer and post-fabrication annealing. The post-fabrication annealed devices, with or without the ZnO layer, exhibited higher values of JSC, VOC and EQE than those of similar devices annealed before depositing the Al metal. This can be attributed to, among other things, improved charge transport across the interface between the photoactive layer and the Al top electrode as a result of post-annealing induced modification of the interface morphology.  相似文献   

20.
This paper introduces for the first time near-field electrohydrodynamic jet printing with tilted-outlet nozzle to obtain the fine and highly conductive patterns of silver (Ag) ink. Line widths produced by near-field electrohydrodynamic jet printing are less than 6 μm, which is approximately twenty times smaller than that of inkjet printing. Under optimized Ag ink annealing ranges 3–9 min for 30 wt% at 150°C, we observed Ag line pattern resistivities as low as 7×10−6 Ω⋅cm. Ag ink conduction mechanisms were brought to light from microstructure analysis and post-thermal-annealing examination of electrical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号