首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction of the dinuclear complex [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl]2 (1) with ligands (L = 4-picoline, sym-collidine) gave the six-membered palladacycles [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (2). The complex 1 reacted with AgX (X = CF3SO3, BF4) and bidentate ligands [L–L = phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), bipy(2,2′-bipyridine) and dppp (bis(diphenylphosphino)propane)] giving the mononuclear orthopalladated complexes [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(L–L)] (3) [L–L = phen, dppe, bipy and dppp]. These compounds were characterized by physico-chemical methods, and the structure of [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (L = sym-collidine) was determined by single-crystal X-ray analysis.  相似文献   

2.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

3.
Two hexacoordinated mononuclear Co(III) compounds of the type cis-[Co(L)(N3)2] X [1, X = ClO4; 2, X = PF6; L = N,N′-(bis(pyridine-2-yl)benzylidine)-1,4-butanediamine] have been synthesized and characterized by physicochemical and spectroscopic methods. The crystal structures of complexes 1 and 2 both have distorted octahedral geometry with two terminal azides in mutual cis orientations. In the crystalline state, two mononuclear units of 1 are associated by weak C–H…π interactions to produce a dimeric unit, which packs through C–H…O hydrogen bonds and π…π interactions leading to a 2-D continuum. The mononuclear units in 2 are engaged in weak cooperative intermolecular C–H…π interactions and multiple C–H…F hydrogen bonds giving rise to a 3-D network structure. These diamagnetic compounds are redox active and show luminescence in DMF solutions.  相似文献   

4.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

5.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

6.
Reactions of the fulvenes C5H4C(R 1 R 2) [(R 1 = CH2CH3, R 2 = CH3 (1); R 1 = R 2 = C2H5 (2); R 1, R 2 = (CH2)4 (3), R 1,R 2 = (CH2)5 (4)] with Mo(CO)6 in refluxing xylene gave the corresponding cyclopentadienyl dimolybdenum carbonyl complexes [(η5-C5H4CR1′R2′Mo(CO)3]2 [(R 1′ = CH2CH3, R 2′ = CH3 (5); R 1′ = R 2′ = C2H5 (6); R 1′, R 2′ = CH(CH2)3 (7); R 1′, R 2′ = CH(CH2)4 (8)], which were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structures were determined by single-crystal X-ray diffraction. The results indicated the exocyclic double bond of the ligands 1 and 2 changed into a single bond and the exocyclic double bond of the ligands 3 and 4 underwent a double-bond isomerization process.  相似文献   

7.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

8.
Three novel unsymmetric tridentate ligands, namely, ptmi (ptmi = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-methoxyisatin), pti (pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin), ptni (ptni = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-nitroisatin), and their complexes [Ru(tpy)(ptmi)](ClO4)2 (tpy = 2,2′:6′,2″-terpyridine) (1), [Ru(tpy)(pti)](ClO4)2 (2), and [Ru(tpy)(ptni)](ClO4)2 (3) were prepared and characterized by elemental analysis, 1H NMR, ES–MS. The electrochemical behaviors were studied by cyclic voltammetry. The DNA-binding properties of these complexes were investigated by the spectroscopic method, viscosity measurements, and thermal denaturation. Theoretical studies on these complexes were also performed with the density functional theory (DFT) method. The experimental results showed that these complexes bind to calf thymus (CT-DNA) in an intercalative mode. The order of DNA-binding affinities (A) of these complexes is A(1) < A(2) < A(3). The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the DFT calculations.  相似文献   

9.
This work describes the synthesis, characterization, and the thermal behavior investigation of four palladium(II) complexes with general formulae [PdX2(mba)2], in which mba = N-methylbenzylamine and X = OAc (1), Cl (2), Br (3) or I (4). The complexes were characterized by elemental analysis, infrared vibrational spectroscopy, and 1H nuclear magnetic resonance. The stoichiometry of the complexes was established by means of elemental analysis and thermogravimetry (TG). TG/DTA curves showed that the thermodecomposition of the four complexes occurred in 3–4 steps, leading to metallic palladium as final residue. The palladium content found in all curves was in agreement with the mass percentages calculated for the complexes. The following thermal stability sequence was found: 3 > 2 > 4 > 1. The geometry optimization of 1, 2, 3, and 4, calculated using the DFT/B3LYP method, yielded a slightly distorted square planar environment around the Pd(II) ion made by two anionic groups and two nitrogen atoms from the mba ligand (N1 and N2), in a trans-relationship.  相似文献   

10.
The synthesis, spectroscopic characterization, and thermal analysis of the compounds [Pd(X)2(mtu)(PPh3)] (X = Cl (1), SCN (2); mtu = N-methylthiourea; PPh3 = triphenylphosphine) and [Pd(X)2(phtu)(PPh3)] (X = Cl (3), SCN (4); phtu = N-phenylthiourea) are described. The thermal decomposition of the compounds occurs in two, three, or four stages and the final decomposition products were identified as Pd0 by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3>2 > 1.  相似文献   

11.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

12.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

13.
Mono- and bi-nuclear Zr(IV) β-ketodiester complexes of general formulas [Zr(dtbacdc)4] (1), [Zr(dmacdc)3(OiPr)]2 (2), and [Zr(dtbacdc)3(OiPr)]2 (3), (dtbacdc = di-tert-butyl-1,3-acetonedicarboxylato and dmacdc = dimethyl-1,3-acetonedicarboxylato ligands) were successfully isolated, when zirconium(IV) isopropoxide reacted with the four- ((1)) or twofold ((2), (3)) excess of di-alkyl 1,3-acetonedicarboxylates (CO(CH2COOR′)2, R′ = Me, tBu). Analysis of single-crystal X-ray diffraction data showed that (1) crystallizes in the monoclinic system (C 2/c (no. 15)). The structure of this compound consists of monomers, which are composed of Zr(IV) ions surrounded by eight oxygen atoms derived from four chelating β-ketodiester ligands. The stoichiometry and the bi-nuclear structure of (2) and (3) using spectroscopic methods (IR and NMR), and mass spectrometry have been determined. Thermal analysis and variable temperature IR (VT-IR) spectroscopy have been used to study the thermal stability and thermal decomposition pathway of synthesized Zr(IV) compounds.  相似文献   

14.
A mononuclear complex [CuL] (1), a binuclear complex [Cu2LCl2(H2O)] (2), a trinuclear complex [Cu3L2](ClO4)2 (3) involving o-phenylenediamine and salicylaldehyde and another binuclear complex of a tridentate ligand (H2L1) [Cu2L21](CH3COO)2 (4) involving o-phenylenediamine and diacetylmonoxime have been synthesized, where H2L = N,N′-o-phenylenebis(salicylideneimine) and H2L1 = 3-(2-aminophenylimino)butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral and magnetic studies. The binuclear complex (2) was characterized structurally where the two Cu(II) centers are connected via an oxygen-bridged arrangement.  相似文献   

15.

Abstract  

Three novel heterometallic microporous coordination polymers {M(Hnico)3M′} n (1, M = Co, M′ = K; 2, M = Ni, M′ = K; 3, M = Co, M′ = Na, Hnico is the anion of 2-hydroxy-nicotinic acid, where the proton is transferred from the phenolate hydroxy group to the nitrogen atom of imine pyridine ring) were synthesized by hydrothermal reaction between M(Ac)2·4H2O, M′OH and a multifunctional organic aromatic H2nico ligand and characterized by IR spectrum, elemental analysis, raman spectrum and the single crystal X-ray diffractions. In complexes 13, the M2+ ions linked three different Hnico ligand formed [M(Hnico)3] subunit which further interlinked the six-coordination M′+ cation constructed 3D network. The network topology of 13 can be simplified a rare 3D (4,4)-connected (41263) net.  相似文献   

16.
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.  相似文献   

17.
Three different types of metal-organic polymers have been prepared by a solution diffusion process carried out at room temperature. Crystals of the copper coordination polymers [CuX(4,4′-bipy)] n (X = Cl, Br, I) have been obtained by the reaction of 4,4′-bipyridine ligands with Cu2X2 fragments to yield a three-dimensional network consisting of four interlocking planar lattices. Single crystals of [Cu2(1,2,4,5-BTC)(DMF)2] n (1,2,4,5-BTC = 1,2,4,5-benzene tetracarboxylate) have been grown by slow diffusion from solutions of a mixture of CuBr2, 2,2′-dithiosalicylic acid, and sodium azide plus a mixture of 1,2,4,5-H4BTC and 4-cyanopyridine. The complex [Co(1,3,5-BTC)(4,4′-bipy)] n (1,3,5-BTC = 1,3,5-benzene tricarboxylate) has a 3D open framework structure involving terminal cobalt atoms plus bridging 1,3,5-BTC and 4,4′-bipyridine ligands.  相似文献   

18.
Two new complexes with formula VOL2·nH2O ((1) L: 4′,5,7-trihydroxyflavone-7-rhamnoglucoside (naringin), n = 8; (2) L: 3′,4′,7-tris[O-(2-hydroxyethyl)]rutin (troxerutin), n = 0) were synthesised and characterised. The IR and UV–Vis spectral data indicate that these flavones act as bidentate chelating ligands and generate VO(II) complexes with a square-pyramidal stereochemistry. The thermal analysis (TG, DTA) elucidated the composition and also the number and nature of the water molecules. The thermal behavior indicates also a strong interaction between oxovanadium (IV) and these oxygen donor ligands.  相似文献   

19.
Two Mn(II) coordination polymers, namely [Mn(bpda)] n (1) and [Mn(bpda)(bpy)0.5] n (2) (H2bpda = 1,1′-biphenyl-3,3′-dicarboxylic acid and bpy = 4,4′-bipyridine), have been synthesized from H2bpdc, bpy, and MnSO4·2H2O under hydrothermal conditions. The complexes were characterized by physicochemical and spectroscopic methods, as well as by X-ray crystallography. Compound 1 possesses a 3D structure consisting of carboxylate-bridged edge-sharing Mn–O–Mn double chains. Compound 2 features a 3D open structure with a dinuclear Mn(II) secondary building unit. Magnetic susceptibility measurements of compounds 1 and 2 exhibit antiferromagnetic interactions between the nearest Mn(II), with J = –11.3 cm−1 and g = 2.12 for 1, and J = –13.5 cm−1 and g = 2.12 for 2.  相似文献   

20.

Abstract  

Based on the polydentate ligand 3,5-bis(3-pyridyl)-1H-1,2,4-triazole (3,3′-Hbpt), three coordination compounds [Zn(3,3′-Hbpt)(ip)]·2H2O (1), [Zn(3,3′-Hbpt)(5-NO2-ip)]·H2O (2), and [Zn(3,3′-Hbpt)2(H2pm)(H2O)2]·2H2O (3) have been hydrothermally constructed with H2ip, 5-NO2-H2ip and H4pm as auxiliary ligands (H2ip = isophthalic acid, 5-NO2-H2ip = 5-NO2-isophthalic acid, H4pm = pyromellitic acid). Structural analysis reveals that Zn(II) ions serve as four-coordinated, five-coordinated, and six-coordinated connectors in 13, respectively, while 3,3′-Hbpt adopts μ-Npy and Npy coordination modes in two typical conformations in these target coordination compounds. Dependently the applied ligand, compounds 13 exhibit either 1D channel, cage or chain structures, respectively. In addition, the luminescence properties of 13 have been investigated in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号