首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Steps towards the numerical simulation of the flow behind the slug front in horizontal slug flow performed with a streamfunction-vorticity representation of the mean flow and an energy dissipation model for the turbulence are discussed. The flow field consists of two vortices, one saddle point and four stagnation regions. Attention is focused on the following boundary conditions: moving wall jet, moving wall, free jet velocity discontinuity and vertical liquid-gas open surface. A dissipation flux boundary condition is suggested to simulate the interaction of the turbulent eddies with the open surface. A method to assess the necessity to use a transport model equation for the dissipation rather than a geometric specification of a length is suggested. Three different ways to characterize the mixing zone length are proposed.  相似文献   

3.
用基于M-SST模型的DES数值模拟喷流流场   总被引:6,自引:0,他引:6  
脱体涡数值模拟方法(dettached eddy simulation,DES)是把雷诺平均Navier-Stokes方程(RANS)方法及大涡模拟方法(LES)结合起来模拟有脱体涡的湍流流场的数值模拟方法,其主要思想是在物面附近解雷诺平均Navier-Stokes方程、在其他区域采用Smagorinski大涡模拟方法。本文在剪切应力传输(SST)湍流模型的基础上用DES及混合非结构网格数值模拟具有横向喷流的湍流流场,算法采用Osher逆风格式,利用该套程序(包括网格生成及算法),对导弹在不同马赫数下的喷流流场进行了数值模拟,并与同时开展的实验研究的结果进行了对比,结果表明用该方法处理这类问题是较准确的。  相似文献   

4.
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder1 and followers2,3,4,5. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterised by Kolmogorov microscales. According t o this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become “Kolmogorov” eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As a n example, the concept is incorporated in the standard κ - εmodel which is then applied t o channel and boundary layer flows. Using appropriate boundary conditions (based on Kolmogorov behaviour of near-wall turbulence), there is no need for any wall-modification to the κ - ε equations (including model constants). Results compare very well with the DNS and experimental data.  相似文献   

5.
 The large quasi two-dimensional turbulence structures that emerge in a shallow mixing layer are studied experimentally using Laser Doppler Anemometry. Velocity profiles and turbulence intensities are measured in the first two meters downstream of the splitter plate. In contradistinction with previous experiments, it is shown that the initial growth rate and the turbulence intensities of the shallow mixing layer compare well with deep-water plane mixing layers. Two-point measurements allowed for the determination of spatial correlations of the fluctuating velocity components. The large eddies were found to extend from one tenth of the water depth up to the free surface while the streamwise size of the eddies was found to be three times the mixing layer width. The two-dimensional character of the large structures and the associated reversed energy cascade is inferred from the power spectra of the lateral velocity component. Received: 2 April 1997/Accepted: 25 August 1997  相似文献   

6.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


7.
In this paper some preliminary results concerning the application of the high‐order discontinuous Galerkin (DG) method for the resolution of realistic problems of tidal flows around shallow water islands are presented. In particular, tidal flows are computed around the Rattray island located in the Great Barrier Reef. This island is a standard benchmark problem well documented in the literature providing useful in situ measurements for validation of the model. Realistic elements of the simulation are a tidal flow forcing, a variable bathymetry and a non‐trivial coastline. The computation of tidal flows in shallow water around an island is very similar to the simulation of the Euler equations around bluff bodies in quasi‐steady flows. The main difference lies in the high irregularity of islands' shapes and in the fact that, in the framework of large‐scale ocean models, the number of elements to represent an island is drastically limited compared with classical engineering computations. We observe that the high‐order DG method applied to shallow water flows around bluff bodies with poor linear boundary representations produces oscillations and spurious eddies. Surprisingly those eddies may have the right size and intensity but may be generated by numerical diffusion and are not always mathematically relevant. Although not interested in solving accurately the boundary layers of an island, we show that a high‐order boundary representation is mandatory to avoid non‐physical eddies and spurious oscillations. It is then possible to parametrize accurately the subgrid‐scale processes to introduce the correct amount of diffusion in the model. The DG results around the Rattray island are eventually compared with current measurements and reveal good agreement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
采用动态亚格子模式和浸没边界法,对宽浅槽道中的丁坝群绕流的水动力学特性进行了三维大涡模拟研究. 利用丁坝绕流,试验中采用粒子图像测速仪(particle image velocimetry, PIV)测量的试验中自由水面处的时间平均流速和湍动强度数据对模型进行率定,结果表明计算结果与试验数据吻合良好. 丁坝长度与丁坝之间距离的比值L/D对丁坝周围的水流流动形式、湍流强度、涡量分布有显著影响. 在L保持不变并且L/D较大时,丁坝之间的距离D较小,这限制了混合层的发展,因此混合层中的湍动强度和涡量都较小;同时丁坝之间的回流区的流线形式也发生明显变化. 此外,还给出了涡体在丁坝坝头附近产生,发展并向下游输运的动态过程.  相似文献   

9.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.  相似文献   

11.
强光林  杨易  陈阵  谷正气  张勇 《力学学报》2020,52(5):1371-1382
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.   相似文献   

12.
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart--Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.  相似文献   

13.
A coupling methodology between an upstream Reynolds Averaged Navier–Stokes (RANS) simulation and a Large Eddy Simulation (LES) further downstream is presented. The focus of this work is on the RANS-to-LES interface inside an attached turbulent boundary layer, where an unsteady LES content has to be explicitly generated from a steady RANS solution. The performance of the Synthetic-Eddy Method (SEM), which generates realistic synthetic eddies at the inflow of the LES, is investigated on a wide variety of turbulent flows, from simple channel and square duct flows to the flow over an airfoil trailing edge. The SEM is compared to other existing methods of generation of synthetic turbulence for LES, and is shown to reduce substantially the distance required to develop realistic turbulence downstream of the inlet.  相似文献   

14.
A detail study involving flow visualization, Laser Doppler Velocimeter (LDV) measurements and numerical prediction is presented. The visualization experiments revealed striking results of a pulsatile motion in the separated flow region associated with the formation and passage of large eddy structures. Measurements of mean velocities and turbulence intensity profiles across the separated flow field, provided information about the separated shear layer development and the recirculating flow pattern. The numerical predictions, obtained with a two-layer turbulence model in conjunction with the SIMPLE algorithm, failed to reproduce the coherent eddies and the pulsatile motion, but the mean velocities are reasonably reproduced.  相似文献   

15.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A model equation based on the equipartition of the turbulent dissipation is proposed for describing the dynamics of large-scale eddies in turbulent flows. The equation is reducible to the equation of motion of an inviscid fluid, so that the motion of the large-scale eddies can be described in terms of inviscid fluid dynamics. It is found that the large-scale eddies are always weakened by the background turbulence and their evolution is slowed down compared with the corresponding inviscid motion. In the case of turbulent mixing layer, its linear growth in downstream direction is accounted for by the exponential growth in time of the perturbation in an inviscid plane vortex sheet.  相似文献   

17.
介绍了气体动理学格式(GKS)的基本构造原理及其在两种典型多尺度流动模拟中的应用。GKS利用介观BGK方程的跨尺度演化解来构造网格界面上的数值通量,从而发展出能随计算网格尺度变化自动切换物理模型的多尺度方法。对湍流这种宏观多尺度流动,发展了高精度GKS方法并成功用于低雷诺数湍流的直接数值模拟;为实现对高雷诺数湍流的高效精细模拟,基于拓展BGK方程和已有的RANS,LES模型建立了新型多尺度模拟框架。对跨流域稀薄流动,发展了适合大规模并行的三维统一气体动理学格式(UGKS),并建立了适合轴对称稀薄流动的UGKS。研究表明,GKS在多尺度流动高效模拟中的优异性能,具有很好的发展前景。  相似文献   

18.
The process of folding of villin subdomain HP-35 has been studied using the method of molecular dynamics. To characterize protein conformations, two variables are introduced that correspond to the distances between fluorophores in experiments on protein folding with the Förster resonance energy. The simulation results show that the field of probability flows of transitions between protein states is filled with eddies. It has been found that, in contrast to the previously studied cases of hydrodynamic turbulence and turbulence in protein folding in three-dimensional conformational space, the structure functions of the flows of various orders depend linearly on the increment in the conformational space. An explanation of this linear dependence based on the β-model is proposed. It is shown that this dependence is not due to the choice of variables to describe the folding process.  相似文献   

19.
Some properties of large-scale structures in supersonic turbulent flows are examined through experiments. The large eddies considered here include energetic scales, which contribute predominantly to, say, turbulent energy and coherent structures. Different features are presented, such as the level of energy in supersonic free shear flows, the average size of energetic structures, and their characteristic timescales. It is shown that compressibility affects the level of velocity and the size of the energetic eddies, but in many common supersonic situations, the estimation of the timescales can be made from rules valid for solenoidal turbulence. Some implications for compressible turbulence modeling are suggested. Finally, the properties of coherent structures are considered in the case of mixing layers and in a separated shock/boundary layer interaction. Some features relative to the organization of the large eddies are given and the importance of the shock motion is discussed in relation to the shock/layer interaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases incfuding a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号