首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
掺碳制备锂离子电池正极材料LiFePO4   总被引:3,自引:0,他引:3  
采用固相法合成LiFePO4和掺碳的LiFePO4,并对不同掺碳量的LiFePO4进行电化学性能测试,室温条件下,在0.1 C倍率下充放电,样品d(ωC=8.5%)的初始放电容量为151.7 mA·h/g.10次循环后,其放电比容量仍有149.5 mA·h/g,容量损失较小.这表明,在合适的制备工艺条件下,掺碳能获得结构稳定、电化学性能良好的锂离子电池正极材料LiFePO4.  相似文献   

2.
Finding appropriate positive electrode materials for Li-ion batteries is the next big step for their application in emerging fields like stationary energy storage and electromobility. Among the potential materials 3d-transition metal doped spinels exhibit a high operating voltage and, therefore, are highly promising cathode materials which could meet the requirements regarding energy and power density to make Li-ion batteries the system of choice for the above mentioned applications. The compounds considered here include substituted Mn-based spinels such as LiM0.5Mn1.5O4 (M = Ni, Co, Fe), LiCrMnO4 and LiCrTiO4. In this review, the recent researches conducted on these spinel materials are summarized. These include different routes of synthesis, structural studies, electrode preparation, electrochemical performance and mechanism of Li-extraction/insertion, thermal stability as well as degradation mechanisms. Note that even though the Ni-, Co-, and Fe-doped materials share the same chemical formula, the oxidation state distributions as well as the operating voltages are different among them. Furthermore, apart from the initial structural similarity, the Li-intercalation takes place through different mechanisms in different materials. In addition, this difference in mechanism is found to have considerable influence on the long-term cycling stability of the material. The routes to improve the electrochemical performance of some of the above candidates are discussed. Further emphasis is given to the parameters that limit their application in current technology, and strategies to overcome them are addressed.  相似文献   

3.
LiFePO4/graphene (LiFePO4/G) cathode with exciting electrochemical performance was successfully synthesized by liquid phase method. LiFePO4 nanoparticles wrapped with multi-layered grapheme can be fabricated in a short time. This method did not need external heating source. Heat generated by chemical reaction conduct the process and removed the solvent simultaneously. The LiFePO4/G were analyzed by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), magnetic properties analysis and electrochemical performance tests. The LiFePO4/G delivered a capacity of 160 mAh g−1 at 0.1C and could tolerate various dis-charge currents with a capacity retention rate of 99.8%, 99.2%, 99.0%, 98.6%, 97.3% and 95.0% after stepwise under 5C, 10C, 15C, 20C, 25C and 30C, respectively.  相似文献   

4.
A novel synthetic method of microwave processing to prepare Li_2FeSiO_4 cathode materials is adopted.The Li_2FeSiO_4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing.Olivin-type Li_2FeSiO_4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700℃in 12 min.And the obtained Li_2FeSiO_4 materials show better electrochemical performance and microstructure than those of Li_2FeSiO_4 sample by the conventional solids...  相似文献   

5.
Nano-crystalline LiFePO4 and LiMg0.05Fe0.95PO4 cathode materials were synthesized by sol–gel method in argon atmosphere using succinic acid as a chelating agent. Physico-chemical characterizations were done by thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and Raman spectroscopy. Electrochemical behavior of the cathode materials were analyzed using cyclic voltammetry, and galvanostatic charge/discharge cycling studies were employed to characterize the reaction of lithium-ion insertion into and extraction from virginal and magnesium-doped LiFePO4, in the voltage range 2.5 to 4.5 V (Vs Li/Li+) using 1 M LiPF6 with 1:1 ratio of ethylene carbonate and dimethyl carbonate as electrolytes. LiMg0.05Fe0.95PO4 exhibits initial charge and discharge capacities of 159 and 141 mAh/g at 0.2 C rate respectively, as compared to 121 and 107 mAh/g of pristine LiFePO4. Furthermore, LiMg0.05Fe0.95PO4 has retained more than 89% of the capacity even after 60 cycles. Hence, LiMg0.05Fe0.95PO4 is a promising cathode material for rechargeable lithium-ion batteries.  相似文献   

6.
Synthetic LiFePO4/C without using inert gas   总被引:2,自引:0,他引:2  
LiFePO_4/C was synthesized by high temperature solid-state method with cheap Fe2O3, LiH2PO4 and glucose as raw materials in absence of inert gas. The sample had ordered olivine-type structure other impurities characterized by the test of X-ray diffraction (XRD). The charge-discharge test showed the sample could demonstrate 120.5 mAh/g at 0.2C rate with good cyclic capability. The powder microelectrode cyclic voltammetry test indicated that the redox process of the sample had good reversibility.  相似文献   

7.
徐土根  王连邦  李晟  马淳安 《化学学报》2009,67(20):2275-2278
磷酸铁锂作为动力锂离子电池的正极材料正逐渐走向市场.以Li3PO4,FePO4,Fe粉以及乙醇为原料,采用高温热分解方法成功地制得乙醇碳包覆的LiFePO4正极材料.实验结果表明,该LiFePO4/C材料颗粒均匀,分散性好,粒径大约在200nm~1μm之间,颗粒表面被碳包覆,颗粒之间由碳纤维连接.该正极材料首次放电容量达137mAh·g-1,首次充放电库仑效率在95%以上,50次循环后,放电容量基本不衰减,显示出良好的循环稳定性和可逆性.本研究降低了锂离子电池的生产成本,显示了良好的工业化应用前景.  相似文献   

8.
9.
LiFePO4/C and LiYb0.02Fe0.98PO4/C composite cathode materials were synthesized by simple solution technique. The samples were characterized by X-ray diffraction, scanning electron microscope, and thermogravimetric–differential thermal analysis. Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The carbon-coated and Yb3+-doped LiFePO4 sample exhibited an enhanced electronic conductivity of 1.9 × 10?3 Scm?1, and a specific discharge capacity of 146 mAhg?1 at 0.1 C. The results suggest that the improvement of the electrochemical performance can be attributed to the ytterbium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and the conductivity improvement by carbon coating.  相似文献   

10.
镁离子掺杂对LiFePO4/C材料电池性能的影响   总被引:12,自引:0,他引:12  
通过PVA(聚乙烯醇)包覆工艺利用固相法合成了镁离子掺杂的LiFePO4/C.材料的高温电导率特征曲线和电阻率与掺杂含量变化的曲线表明,材料中由于Mg离子的掺杂,使得其导电机制由n型半导体向p型半导体转换.在镁离子掺杂原子百分含量为0.3%(x)下,研究了材料的结晶性能随烧成温度的变化.973 K下合成材料具有良好的微观结构,材料的亚微米颗粒和PVA裂解产生的碳黑形成了粒径在10 μm左右的团簇体.在循环伏安特性曲线中,存在两个小的肩峰,表明在循环过程中,锂离子可以通过由掺杂产生的锂空位进行插入和脱出.材料在0.1 C的充放电速率下,首次充放电曲线具有平稳的电压平台和较大的充放电容量.当充放电速率为0.5 C时,材料仍然具有大于120 mA•h•g-1的充放电容量;经过100次循环后,基本上没有发现材料的循环容量衰减的情况.  相似文献   

11.
Lithium-ion batteries(LIBs) have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the expansion of their applications in deep-sea exploration,aerospace and military equipment,special working conditions have placed higher demands on the low-temperature performance of LIBs.However,at low temperatures,the severe polarization and inferior electrochemical activity of electrode materials cause the acute capacity fading upon cycling,which greatly hindered the further development of LIBs.In this review,we summarize the recent important progress of LIBs in low-temperature operations and introduce the key methods and the related action mechanisms for enhancing the capacity of the various cathode and anode materials.It aims to promote the development of high-performance electrode materials and broaden the application range of LIBs.  相似文献   

12.
Microwave-assisted synthesis has continued to be adopted for the preparation of high-performance manganese-based cathode materials for lithium-ion batteries. The technique is fast, energy-efficient and has significant positive impacts on the general physico-chemical properties of the cathode materials: LiMn2O4, LiMn1.5Ni0.5O4, and lithium nickel manganese cobalt oxides. Despite the advantages of microwave-assisted synthesis, this review reveals that the application is still limited. In our opinion, increased basic knowledge of the microwave process and availability of safe and reliable instrumentation could be a great opportunity for the commercial realization of low-cost and energy-dense Mn-based cathode materials for the next-generation lithium-ion batteries.  相似文献   

13.
The olivine-type cathode materials of LiFePO4 were prepared via solid-state reaction under argon atmosphere and doped by chlorine to improve their electrochemical performances. The crystal structure, morphology, and electrochemical properties of the prepared samples were investigated using thermogravimetry–differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, scanning electron microscopy, cyclic voltammetry, and charge–discharge cycle measurements. The result showed that the electrochemical performance of LiFePO4 had been improved by chlorine doping, and the effect of chlorine in lattice was discussed. The heavily doped samples show better electrochemical performance in relative high rates.  相似文献   

14.
A novel anode material for lithium-ion batteries, tin nanoparticles coated with carbon embedded in graphene (Sn@C/graphene), was fabricated by hydrothermal synthesis and subsequent annealing. The structure and morphology of the nanocomposite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The size of the Sn@C nanoparticles is about 50-200 nm. The reversible specific capacity of the nanocomposite is ∼662 mAh g−1 at a specific current of 100 mA g−1 after 100 cycles, even ∼417 mAh g−1 at the high current of 1000 mA g−1. These results indicate that Sn@C/graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of the nanocomposite with both of the graphene and carbon shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin.  相似文献   

15.
Dou  Junqing  Kang  Xueya  Wumaier  Tuerdi  Hua  Ning  Han  Ying  Xu  Guoqing 《Journal of Solid State Electrochemistry》2012,16(5):1925-1931
LiFePO4/C composite is synthesized by oxalic acid-assisted rheological phase method. Fe2O3 and LiH2PO4 are chosen as the starting materials, sucrose as carbon sources, and oxalic acid as the additive. The crystalline structure and morphology of the products are characterized by X-ray diffraction and field emission scanning electron microscopy. The charge–discharge kinetics of LiFePO4 electrode is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the introduction of appropriate amount of oxalic acid leads to smaller particle sizes, more homogeneous size distribution, and some Fe2P produced in the final products, resulting in reduced polarization, impedance, and improved Li+ ion diffusion coefficient. The best cell performance is delivered by the sample with R = 1.5 (R of the molar ratio of oxalic acid to LiH2PO4). Its discharge capacity is 154 mAh g−1 at 0.2 C rate and 120 mAh g−1 at 5.0 C rate. At the same time, it exhibits an excellent cycling stability; no obvious decrease even after 1,000 cycles at 1.0 C rate.  相似文献   

16.
Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g?1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g?1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88?×?10?6 to 2.82?×?10?3 S cm?1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.  相似文献   

17.
以LiH2PO4和还原铁粉为原料,通过机械液相活化法获得了棒状形貌的[Fe3(PO4)2·8H2O+Li3PO4]前驱体,然后在三甘醇(TEG)介质中采用多元醇工艺制备了LiFePO4材料.为提高其电导率,以聚乙烯醇(PVA)为碳源,对纯相LiFePO4进行碳包覆改性.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒电流充放电和电化学阻抗谱(EIS)等测试方法对制备的材料进行了表征.结果表明:采用机械活化辅助多元醇法可在低温下合成结晶良好的LiFePO4,碳包覆改性的LiFePO4/C材料导电性能得到改善,电荷转移阻抗减小,1C、2C倍率下放电容比量分别为139.8、129.5mAh·g-1,具有良好的倍率性能和循环稳定性.  相似文献   

18.
A compound"vacuum firing and water quenching"technique was presented in the synthesis of LiFePO_4 cathode powder.The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube,followed by water quenching at the sintering temperature.The results indicate that using the"fast quenching"treatment can succeed in controlling overgrowth of the grain size of final product and improving its utilization ratio of active material.The sample synthesized by this technique has the high reversible discharge specific capacity and good cyclic electrochemical performance.  相似文献   

19.
LiFePO4电池在电动汽车领域具有独特的优势且占有市场持续扩张和稳步增长,电池失效现象的正确理解和失效机理分析对锂离子电池性能的提升和技术改进有着重要作用。其中,电池材料在工作和升温过程中发生产气、热失控等因素为失效现象中最为常见的原因,本文利用热分析-质谱联用技术,针对LiFePO4电池阴极材料在升温过程中的热行为和反应过程所产生的逸出气体种类及动态特征进行了详细阐述。通过采用具有Skimmer采样接口的热分析-质谱联用设备TG-DSC-EI-MS对惰性气氛和氧气气氛下的反应过程热行为和逸出气体进行定性研究。分析结果揭示,惰性气氛下的分解反应主要集中在435℃~800℃,其逸出气体以H2,H2O,PF5为主;氧气气氛下的燃烧反应过程分多个阶段进行,主要集中在四个温度区间内:75℃~200℃,235℃~460℃,465℃~590℃,645℃~745℃,其逸出气体以H2,H2O,CxHy,CO2等组分为主。不同气体组分受温度和气氛影响,其逸出动态特征也不尽相同,其中低温段逸出气体多为电池无机材料的分解和挥发为主,随着温度升高逸出气体的产生以有机材料的分解和含碳材料的氧化为主,其中含氟气体的逸出行为贯穿整个升温过程中,19F+主要来源于热稳定性较差的LiPF6,该研究结果为LiFePO4电池使用过程中受温度和产气影响机理研究提供了基础信息和方向。  相似文献   

20.
褚道葆  李艳  宋奇  周莹 《物理化学学报》2011,27(8):1863-1867
以富含植物蛋白的豆浆作为碳源, 以FePO4·4H2O和LiOH·H2O为原料, 采用流变相方法合成了锂离子电池正极材料LiFePO4/C. X射线衍射(XRD)和扫描电子显微镜(SEM)的表征结果显示, 样品具有良好的结晶性能, 平均粒径约200 nm, 颗粒表面有均匀网络状的碳包覆. 充放电循环研究结果表明: LiFePO4/C具有稳定的电化学循环性能, LiFePO4/C正极材料在0.1C倍率下首次放电比容量达到156 mAh·g-1, 首次充放电效率达到98.7%; 循环40次后, 放电比容量为149 mAh·g-1, 电池容量保持率在95%以上, 1C倍率下首次放电比容量达到134.7 mAh·g-1, 显示出较高的电化学容量和优良的循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号