首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The azide and amide complexes (NBu4)[Ni(N3)('S3')] (2) and (NBu4)[Ni[N(SiMe3)2]('S3')] (4) were found to react with CO, CO2, and SO2 under very mild conditions at temperatures down to -50 degrees C. Depending on the N oxidation state of the nitrogen ligands, addition or partial to complete desoxygenation of the oxides takes place. The reaction between 2 and CO gives (NBU4)[Ni(NCO)('S3')] (3). The reactions between 4 and CO, CO2, and SO2 afford selectively the cyano, isocyanato, and sulfinylimido complexes (NBu4)[Ni(X)('S3')] with X = CN- (5), NCO- (3), and NSO- (6). The silyl groups act as oxygen acceptors. Mechanisms are suggested which have in common the formation of reactive five-coordinate (NBu4)[Ni(L)(L')('S3')] intermediates. In these reactions, highly activated L and L' react with each other. The complexes were characterized by standard methods, and (NBu4)[Ni(CN)('S3')] (5) was also analyzed by X-ray crystallography.  相似文献   

2.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

3.
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate and characterize the reductive intramolecular cyclization of ethyl 2-bromo-3-(3',4'-dimethoxyphenyl)-3-(propargyloxy)propanoate (1) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)](+), electrogenerated at glassy carbon cathodes in dimethylformamide containing tetraalkylammonium salts. Cyclic voltammograms for reduction of [Ni(tmc)](2+) in the presence of 1 reveal that [Ni(tmc)](+) catalytically reduces 1 at potentials more positive than those required for direct reduction of 1. During controlled-potential electrolyses of solutions containing [Ni(tmc)](2+) and 1, catalytic reduction of the latter proceeds via one-electron cleavage of the carbon-bromine bond to form a radical intermediate that undergoes cyclization to afford 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methylenetetrahydrofuran (2). In the presence of a base (either electrogenerated or deliberately added as potassium tert-butoxide), 2 rearranges to give 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methyl-2,5-dihydrofuran (3). A mechanistic scheme is proposed to explain the results obtained by means of cyclic voltammetry and controlled-potential electrolysis.  相似文献   

4.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

5.
Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) anions (n=4-6) have been structurally characterized in their [NMe(3)(CH(2)Ph)](4)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), [NEt(4)](5)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and [NMe(4)](6)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the [HNi(34)C(4)(CO)(38)](5-) and [Ni(35)C(4)(CO)(39)](6-) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-)(n=4-6) anions display two valence electrons more than the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.  相似文献   

6.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

7.
本文报道了二(2-氨乙基)-1,3-丙二胺[缩写为(2,3,2)]与镍的两个新配合物:[(2,3,2)Ni(ImH)2](ClO4)2和[(2,3,2)2Ni2(Im)](ClO4)3的合成和晶体结构(其中ImH是咪唑)。配合物[(2,3,2)Ni(ImH2)](ClO4)2属于正交晶系,空间群Pna21, 晶胞参数为:a=16.798(3), b=15.724(3), c=8.891(2)?,Z=2。R1=0.0566, wR2=0.0659。在配合物正离子中,Ni与(2,3,2)的四个配位N原子和两个咪唑的两个配位N原子构成NiN6的八面体配位构型,(2,3,2)采取顺式构象。配合物[(2,3,2)2Ni2(Im)](ClO4)3属于单斜晶系,空间群C2,晶胞参数为:a=12.044(1), b=12.224(2), c=11.868(1)?;β=108.04°;Z=2, R1=0.0384, wR2=0.0516。在配合物正离子中,咪唑桥联两个等价的(2,3,2)Ni,每个镍原子都有四方锥的配位环境,(2,3,2)的四个配位N原子构成赤道平面,咪唑N原子占据轴向位置,分子内两个金属间的距离为6.190(3)?。  相似文献   

8.
Density functional theory has been used to investigate the reaction between H(2) and [Ni(NHPnPr(3))('S3')] or [Pd(NHPnPr(3))('S3')], where 'S3' = bis(2-sulfanylphenyl)sulfide(2-), which are among the few synthetic complexes featuring a metal coordination environment similar to that observed in the [NiFe] hydrogenase active site and capable of catalyzing H(2) heterolytic cleavage. Results allowed us to unravel the reaction mechanism, which is consistent with an oxidative addition-hydrogen migration pathway for [Ni(NHPnPr(3))('S3')], whereas metathesis is also possible with [Pd(NHPnPr(3))('S3')]. Unexpectedly, H(2) binding and activation implies structural reorganization of the metal coordination environment. It turns out that the structural rearrangement in [Ni(NHPnPr(3))('S3')] and [Pd(NHPnPr(3))('S3')] can take place due to the peculiar structural features of the Ni and Pd ligands, explaining the remarkable catalytic properties. However, the structural reorganization is the most unfavorable step along the H(2) cleavage pathway (DeltaG > 100 kJ mol(-1)), an observation that is relevant for the design and synthesis of novel biomimetic catalysts.  相似文献   

9.
The reaction of Ni(COD)(2)(COD = 1,5-cyclooctadiene) with triethylphosphine and pentafluoropyridine in hexane has been shown previously to yield trans-[NiF(2-C(5)NF(4))(PEt(3))(2)](1a) with a preference for reaction at the 2-position of the heteroaromatic. The corresponding reaction with 2,3,5,6-tetrafluoropyridine was shown to yield trans-[NiF(2-C(5)NF(3)H)(PEt(3))(2)](1b). In this paper, we show that reaction of Ni(COD)(2) with triethylphosphine and pentafluoropyridine in THF yields a mixture of 1a and 1b. Competition reactions of Ni(COD)(2) with triethylphosphine in the presence of mixtures of heteroaromatics in hexane reveal a kinetic preference of k(pentafluoropyridine):k(2,3,5,6-tetrafluoropyridine)= 5.4:1. Treatment of 1a and 1b with Me(3)SiN(3) affords trans-[Ni(N(3))(2-C(5)NF(4))(PEt(3))(2)](2a) and trans-[Ni(N(3))(2-C(5)NHF(3))(PEt(3))(2)](2b), respectively. The complex trans-[Ni(NCO)(2-C(5)NHF(3))(PEt(3))(2)](3b) is obtained on reaction of with Me(3)SiNCO and by photolysis of under CO, while trans-[Ni(eta(1)-C [triple bond CPh)(2-C(5)NF(4))(PEt(3))(2)](4a) is obtained by reaction of phenylacetylene with 1a. Addition of KCN, KI and NaOAc to complex 1a affords trans-[Ni(X)(2-C(5)NF(4))(PEt(3))(2)](5a X = CN, 6a X = I, 7a X = OAc), respectively. The PEt(3) groups of complex are readily replaced by addition of 1,2-bis(dicyclohexylphosphino)ethane (dcpe) to produce [NiF(2-C(5)F(4)N)(dcpe)](8a). Addition of dcpe to trans-[Ni(OTf)(2-C(5)F(4)N)(PEt(3))(2)](10a), however, yields the salt [Ni(2-C(5)F(4)N)(dcpe)(PEt(3))](OTf)(9a) by substitution of only one PEt(3) and displacement of the triflate ligand. The structures of 2b, 4a, 7a and 8a were determined by X-ray crystallography. The influence of different ancillary ligands on the bond lengths and angles of square-planar nickel structures with polyfluoropyridyl ligands is analysed.  相似文献   

10.
The reaction of Et(2)PCH(2)N(Me)CH(2)PEt(2) (PNP) with [Ni(CH(3)CN)(6)](BF(4))(2) results in the formation of [Ni(PNP)(2)](BF(4))(2), which possesses both hydride- and proton-acceptor sites. This complex is an electrocatalyst for the oxidation of hydrogen to protons, and stoichiometric reaction with hydrogen forms [HNi(PNP)(PNHP)](BF(4))(2), in which a hydride ligand is bound to Ni and a proton is bound to a pendant N atom of one PNP ligand. The free energy associated with this reaction has been calculated to be -5 kcal/mol using a thermodynamic cycle. The hydride ligand and the NH proton undergo rapid intramolecular exchange with each other and intermolecular exchange with protons in solution. [HNi(PNP)(PNHP)](BF(4))(2) undergoes reversible deprotonation to form [HNi(PNP)(2)](BF(4)) in acetonitrile solutions (pK(a) = 10.6). A convenient synthetic route to the PF(6)(-) salt of this hydride involves the reaction of PNP with Ni(COD)(2) to form Ni(PNP)(2), followed by protonation with NH(4)PF(6). A pK(a) of value of 22.2 was measured for this hydride. This value, together with the half-wave potentials of [Ni(PNP)(2)](BF(4))(2), was used to calculate homolytic and heterolytic Ni-H bond dissociation free energies of 55 and 66 kcal/mol, respectively, for [HNi(PNP)(2)](PF(6)). Oxidation of [HNi(PNP)(2)](PF(6)) has been studied by cyclic voltammetry, and the results are consistent with a rapid migration of the proton from the Ni atom of the resulting [HNi(PNP)(2)](2+) cation to the N atom to form [Ni(PNP)(PNHP)](2+). Estimates of the pK(a) values of the NiH and NH protons of these two isomers indicate that proton migration from Ni to N should be favorable by 1-2 pK(a) units. Cyclic voltammetry and proton exchange studies of [HNi(depp)(2)](PF(6)) (where depp is Et(2)PCH(2)CH(2)CH(2)PEt(2)) are also presented as control experiments that support the important role of the bridging N atom of the PNP ligand in the proton exchange reactions observed for the various Ni complexes containing the PNP ligand. Similarly, structural studies of [Ni(PNBuP)(2)](BF(4))(2) and [Ni(PNP)(dmpm)](BF(4))(2) (where PNBuP is Et(2)PCH(2)N(Bu)CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) illustrate the importance of tetrahedral distortions about Ni in determining the hydride acceptor ability of Ni(II) complexes.  相似文献   

11.
CO2 and HCO3- react with the dinuclear hydroxo-complex [Ni(mcN3)(mu-OH)]2(PF6)2 (mcN3 = 2,4,4,9-tetramethyl-1,5,9-triazacyclododec-1-ene) to form micro-CO3 bridged nickel(II) complexes, [{Ni(mcN3)}2(mu-CO3)](PF6)2 (1a) with a symmetric core in which both nickel atoms are five-coordinate and [Ni(mcN3)(mu-CO3)Ni(mcN3)(MeCN)](PF6)2 (1b) with an asymmetric dinuclear core containing five- and six-coordinate nickel atoms. The magnetic behaviour indicates the existence of antiferromagnetic coupling between the metallic centres. A substantial increase in the value of J occurs when the symmetric five-coordinate nickel species transforms to an asymmetric five- and six-coordinate species by axial coordination of acetonitrile.  相似文献   

12.
The synthesis and structure, as well as the chemical and electrochemical characterisation of two new nu(3)-octahedral bimetallic clusters with the general [Ni(44-x)M(x)(CO)(48)](6-) (M = Pd, x = 8; M = Pt, x = 9) formula is reported. The [Ni(35)Pt(9)(CO)(48)](6-) cluster was obtained in reasonable yields (56 % based on Pt) by reaction of [Ni(6)(CO)(12)](2-) with 1.1 equivalents of Pt(II) complexes, in ethyl acetate or THF as the solvent. The [Ni(36)Pd(8)(CO)(48)](6-) cluster was obtained from the related reaction with Pd(II) salts in THF, and was isolated only in low yields (5-10 % based on Pd), mainly because of insufficient differential solubility of its salts. The unit cell of the [NBu(4)](6)[Ni(35)Pt(9)(CO)(48)] salt contains a substitutionally Ni-Pt disordered [Ni(24)(Ni(14-x)Pt(x))Pt(6)(CO)(48)](6-) (x = 3) hexaanion. A combination of crystal and molecular disorder is necessary to explain the disordering observed for the Ni/Pt sites. The unit cell of the corresponding [Ni(36)Pd(8)(CO)(48)](6-) salt contains two independent [Ni(30)(Ni(8-x)Pd(x))Pd(6)(CO)(48)](6-) (x = 2) hexaanions. The two display similar substitutional Ni-Pd disorder, which probably arises only from crystal disorder. The structure of [Ni(36)Pd(8)(CO)(48)](6-) establishes the first similarity between the chemistry of Ni-Pd and Ni-Pt carbonyl clusters. A comparison of the chemical and electrochemical properties of [Ni(35)Pt(9)(CO)(48)](6-) with those of the related [Ni(38)Pt(6)(CO)(48)](6-) cluster shows that surface colouring of the latter with Pt atoms decreases redox as well as protonation propensity of the cluster. In contrast, substitution of all internal Pt and two surface Ni with Pd atoms preserves the protonation behaviour and is only detrimental with respect to its redox aptitude. A qualitative rationalisation of the different surface-site selectivity of Pt and Pd, based on distinctive interplays of M--M and M--CO bond energies, is suggested.  相似文献   

13.
[Sn(9)Pt(2)(PPh(3))](2)(-) (2) was prepared from Pt(PPh(3))(4), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive and has been characterized by ESI-MS, variable-temperature (119)Sn, (31)P, and (195)Pt NMR and single-crystal X-ray diffraction studies. The structure of 2 comprises an elongated tricapped Sn(9) trigonal prism with a capping PtPPh(3), an interstitial Pt atom, a hypercloso electron count (10 vertex, 20 electron) and C(3)(v)() point symmetry. Hydrogenation trapping experiments and deuterium labeling studies showed that the formation of 2 involves a double C-H activation of solvent molecules (en or DMSO) with the elimination of H(2) gas. The ESI-MS analysis of 2 showed the K[Sn(9)Pt(2)(PPh(3))](1)(-) parent ion, an oxidized [Sn(9)Pt(2)(PPh(3))](1)(-) ion, and the protonated binary cluster anion [HSn(9)Pt(2)](1)(-). 2 is highly fluxional in solution giving rise to a single time-averaged (119)Sn NMR signal for all nine Sn atoms but the Pt atoms remain distinct. The exchange is intramolecular and is consistent with a rigid, linear Pt-Pt-PPh(3) rod embedded in a liquidlike Sn(9) matrix. [Sn(9)Ni(2)(CO)](3)(-) (3) was prepared from Ni(CO)(2)(PPh(3))(2), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive, is paramagnetic, and has been characterized by ESI-MS, EPR, and single-crystal X-ray diffraction. Complex 3 is a 10-vertex 21-electron polyhedron, a slightly distorted closo-Sn(9)Ni cluster with an additional interstitial Ni atom and overall C(4)(v)() point symmetry. The EPR spectrum showed a five-line pattern due to 4.8-G hyperfine interactions involving all nine tin atoms. The ESI-MS analysis showed weak signals for the potassium complex [K(2)Sn(9)Ni(2)(CO)](1-) and the ligand-free binary ions [K(2)Sn(9)Ni(2)](1)(-), [KSn(9)Ni(2)](1)(-), and [HSn(9)Ni(2)](1)(-).  相似文献   

14.
The reaction of [(dippe)Ni(μ-H)](2) (A) (dippe = 1,2-bis(diisopropyl-phosphinoethane) with CO(2) in toluene afforded the carbonyl nickel(0) compounds of the type {(dippe)Ni(CO)](2)(μ-dippe)}(1) and (dippe)Ni(CO)(dippe==O)] (2), which were characterized by standard spectroscopic methods; complex (1) was also characterized by single crystal X-ray diffraction. Reaction of (A) with SO(2) yields the thiosulfate nickel(II) compound [Ni(dippe)(S(2)O(3))] (5), which was fully characterized by standard spectroscopic methods and X-ray crystallography. In both cases, a reduction reaction of CO(2) to CO and SO(2) to S(2)O(3)(2-) with (A) took place under mild conditions.  相似文献   

15.
The ligands [hydrotris(3-cyclohexylpyrazol-1-yl)borate, [Tp(Cy)](-), tetrakis(3-cyclohexylpyrazol-1-yl)borate, [pz(o)Tp(Cy)](-), and hydrotris(3-cyclohexyl-4-bromopyrazol-1-yl)borate, [Tp(Cy,4Br)](-) were synthesized and characterized as their Tl(I) derivatives. They were converted to a variety of tetrahedral LMX and octahedral LML' complexes, as well as to the dinuclear nickel carbonate complex [Ni(Tp(Cy))](2)(CO(3)), 4, and the compound Ni[Tp(Cy,4Br)][pz(Cy,4Br)](3)(H)(2), 5. The structures of Co[Tp(Cy)]Cl, 1, Co[Tp(Cy,4Br)]Cl, 2, Co[Tp(Cy,4Br)]NCS, 3, [Ni(Tp(Cy))](2)(CO(3)), 4, Ni[Tp(Cy,4Br)][pz(Cy,4Br)](3)(H)(2), 5, and Mo[Tp(Cy)](CO)(2)(eta(3)-methallyl), 6, were determined by X-ray crystallography. The structures of paramagnetic heteroleptic complexes Co[Tp(Cy)][Tp], Co[Tp(Cy)][Tp], Co[Tp(Cy,4Br)][Tp], and Co[Tp(Cy,4Br)][Tp] were established by NMR. The homoleptic compounds Co[Tp(Cy)](2) and Co[Tp(Cy,4Br)](2) rearrange thermally to Co[Tp(Cy)](2) and to Co[Tp((Cy,4Br))](2), respectively, containing one 5-cyclohexyl group/ligand.  相似文献   

16.
Divalent and trivalent nickel complexes of 1,4,8,11-tetraazacyclotetradecane, denoted as cyclam hereafter, coordinated by methyl coenzyme M (MeSCoM(-)) and coenzyme M (HSCoM(-)) have been synthesized in the course our model studies of methyl coenzyme M reductase (MCR). The divalent nickel complexes Ni(cyclam)(RSCoM)(2) (R = Me, H) have two trans-disposed RSCoM(-) ligands at the nickel(II) center as sulfonates, and thus, the nickels have an octahedral coordination. The SCoM(2-) adduct Ni(cyclam)(SCoM) was also synthesized, in which the SCoM(2-) ligand chelates the nickel via the thiolate sulfur and a sulfonate oxygen. The trivalent MeSCoM adduct [Ni(cyclam)(MeSCoM)(2)](OTf) was synthesized by treatment of [Ni(cyclam)(NCCH(3))(2)](OTf)(3) with ((n)Bu(4)N)[MeSCoM]. A similar reaction with ((n)Bu(4)N)[HSCoM] did not afford the corresponding trivalent HSCoM(-) adduct, but rather the divalent nickel complex polymer [-Ni(II)(cyclam)(CoMSSCoM)-](n) was obtained, in which the terminal thiol of HSCoM(-) was oxidized to the disulfide (CoMSSCoM)(2-) by the Ni(III) center.  相似文献   

17.
Electrospray ionization of an aqueous solution of nickel(II) sulfate provides direct experimental evidence for the formation of triple ions of the type [Ni(2)(SO(4))(H(2)O)(n)](2+) and [Ni(SO(4))(2)](2-), whose existence in aqueous solution has previously been proposed based on relaxation spectroscopy [Chen et al. J. Sol. Chem. 2005, 34, 1045]. Formally, these triple ions are formed by aggregation of the solvated ions Ni(2+) and SO(4)(2-), respectively, with the neutral ion pair NiSO(4). In addition, also higher adducts are observed, e.g. the "pentuple ions" [Ni(3)(SO(4))(2)(H(2)O)(n)](2+) (n = 7-9) and [Ni(2)(SO(4))(3)](2-), of which the dicationic is extensively hydrated, whereas the anionic is not. The structures of the dinuclear nickel clusters are derived from ab initio calculations and their infrared spectra are compared with experimental data obtained for the gaseous ions [Ni(2)SO(4)(H(2)O)(5)](2+) and [Ni(2)(SO(4))(3)](2-), respectively. The calculations show that the structures are crucially controlled by the degree of solvation of nickel ion. Explicit consideration of solvating water molecules within the first coordination sphere suggest that the dicationic triple ion [Ni(2)SO(4)](aq)(2+) is bent and thus bears a permanent dipole moment, whereas the [Ni(SO(4))(2)](aq)(2-) dianion tends to be quasi-linear. The experimental and theoretical data for the gaseous ions thus support the elegant, but indirect, deductions previously made based on solution-phase studies.  相似文献   

18.
The mononuclear complex Fe(CO)(4)(PPh(2)CH(2)CH(2)SH), 1, is isolated as an intermediate in the overall reaction of PPh(2)CH(2)CH(2)SH with [Fe(0)(CO)(4)] sources to produce binuclear bridging thiolate complexes. Photolysis is required for loss of CO and subsequent S-H activation to generate the metal-metal bonded Fe(I)-Fe(I) complex, (mu-SCH(2)CH(2)PPh(2))(2)Fe(2)(CO)(4), 2. Isomeric forms of 2 derive from the apical or basal position of the P-donor ligand in the pseudo square pyramidal S(2)Fe(CO)(2)P coordination spheres. This position in turn is dictated by the stereochemistry of the mu-S-CH(2) bond, designated as syn or anti with respect to the Fe(2)S(2) butterfly core. Addition of strong acids engages the Fe(I)-Fe(I) bond density as a bridging hydride, [(mu-H)-anti-2](+)[SO(3)CF(3)](-) or [(mu-H)-syn-2](+)[SO(3)CF(3)](-), with formal oxidation to Fe(II)-H-Fe(II). Molecular structures of anti-2, syn-2, and [(mu-H)-anti-2](+)[SO(3)CF(3)](-) were determined by X-ray crystallography and show insignificant differences in distance and angle metric parameters, including the Fe-Fe bond distances which average 2.6 A. The lack of coordination sphere rearrangements is consistent with the ease with which deprotonation occurs, even with the weak base, chloride. The Fe(I)-Fe(I) bond, supported by bridging thiolates, therefore presents a site where a proton might be taken up and stored as a hydride without impacting the overall structure of the binuclear complex.  相似文献   

19.
The NHC-stabilized complex [Ni2(iPr2Im)4(cod)] (1) was isolated in good yield from the reaction of [Ni(cod)2] with 1,3-diisopropylimidazole-2-ylidene (iPr2Im). Compound 1 is a source of the [Ni(iPr2Im)2] complex fragment in stoichiometric and catalytic transformations. The reactions of 1 with ethylene and CO under atmospheric pressure or with equimolar amounts of diphenylacetylene lead to the compounds [Ni(iPr2Im)2(eta2-C2H4)] (2), [Ni(iPr2Im)2(eta2-C2Ph2)] (3), and [Ni(iPr2Im)2(CO)2] (4) in good yields. In all cases the [Ni(iPr2Im)2] complex fragment is readily transferred without decomposition or fragmentation. In the infrared spectrum of carbonyl complex 4, the CO stretching frequencies are observed at 1847 and 1921 cm(-1), and are significantly shifted to lower wavenumbers compared with other nickel(0) carbonyl complexes of the type [NiL2(CO)2]. Complex 1 activates the C--F bond of hexafluorobenzene very efficiently to give [Ni(iPr2Im)2(F)(C6F5)] (5). Furthermore, [Ni2(iPr2Im)4(cod)] (1) is also an excellent catalyst for the catalytic insertion of diphenylacetylene into the 2,2' bond of biphenylene. The reaction of 1 with equimolar amounts of biphenylene at low temperature leads to [Ni(iPr2Im)2(2,2'-biphenyl)] (6), which is formed by insertion into the strained 2,2' bond. The reaction of diphenylacetylene and biphenylene at 80 degrees C in the presence of 2 mol % of 1 as catalyst yields diphenylphenanthrene quantitatively and is complete within 30 minutes.  相似文献   

20.
Models for the active site of the acetyl CoA synthase (ACS) were synthesized by attachment of Cu+ and Ni(0) to nickel diaminodithiolate (S2N2) and diamidodithiolate (S2N2') complexes. The Ni-Ni species form stable CO adducts, i.e., [{(CO)2Ni}{NiS2N2'}]2-, whereas the Cu-NiS2N2 and Cu-NiS2N2' models do not. These results provide supporting evidence for a biological role for reduced nickel in ACS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号