首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the problem of heat conduction across molecular junctions connecting two nanoparticles, both in vacuum and in a liquid environment, using classical molecular dynamics simulations. In vacuum, the well-known result of a length independent conductance is recovered; its precise value, however, is found to depend sensitively on the overlap between the vibrational spectrum of the junction and the density of states of the nanoparticles that act as thermal contacts. In a liquid environment, the conductance is constant up to a crossover length, above which a standard Fourier regime is recovered.  相似文献   

2.
The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.  相似文献   

3.
Control of charge carriers that transport through the molecular junctions is essential for thermoelectric materials. In general, the charge carrier depends on the dominant conduction orbitals and is dominantly determined by the terminal anchor groups. The present study discloses the synthesis, physical properties in solution, and single-molecule conductance of paddle-wheel diruthenium complexes 1R having diarylformamidinato supporting ligands (DArF: p-R-C6H4-NCHN-C6H4-R-p) and two axial thioanisylethynyl conducting anchor groups, revealing unique substituent effects with respect to the conduction orbitals. The complexes 1R with a few different aryl substituents (R = OMe, H, Cl, and CF3) were fully characterized by spectroscopic and crystallographic analyses. The single-molecule conductance determined by the scanning tunneling microscope break junction (STM-BJ) technique was in the 10−5 to 10−4G0 region, and the order of conductance was 1OMe > 1CF3 ≫ 1H ∼ 1Cl, which was not consistent with the Hammett substituent constants σ of R. Cyclic voltammetry revealed the narrow HOMO–LUMO gaps of 1R originating from the diruthenium motif, as further supported by the DFT study. The DFT-NEGF analysis of this unique result revealed that the dominant conductance routes changed from HOMO conductance (for 1OMe) to LUMO conductance (for 1CF3). The drastic change in the conductance properties originates from the intrinsic narrow HOMO–LUMO gaps.

Dominant conduction orbitals of paddle-wheel organodiruthenium complexes can be facilely controlled by the substituents embedded in the amidinato ligands.  相似文献   

4.
We have studied electron transport through single redox molecules, perylene tetracarboxylic diimides, covalently bound to two gold electrodes via different linker groups, as a function of electrochemical gate voltage and temperature in different solvents. The conductance of these molecules is sensitive to the linker groups because of different electronic coupling strengths between the molecules and electrodes. The current through each of the molecules can be controlled reversibly over 2-3 orders of magnitude with the gate and reaches a peak near the redox potential of the molecules. The similarity in the gate effect of these molecules indicates that they share the same transport mechanism. The temperature dependence measurement indicates that the electron transport is a thermally activated process. Both the gate effect and temperature dependence can be qualitatively described by a two-step sequential electron-transfer process.  相似文献   

5.
Heat conduction through molecular chains connecting two reservoirs at different temperatures can be asymmetric for forward and reversed temperature biases. Based on analytically solvable models and on numerical simulations we show that molecules rectify heat when two conditions are satisfied simultaneously: the interactions governing the heat conduction are nonlinear, and the junction has some structural asymmetry. We consider several simplified models where a two-level system (TLS) simulates a highly anharmonic vibrational mode, and asymmetry is introduced either through different coupling of the molecule to the contacts, or by considering internal molecular asymmetry. In the first case, we present analytical results for the asymmetric heat current flowing through a single anharmonic mode using different forms for the TLS-reservoirs coupling. We also demonstrate numerically, studying a realistic molecular model, that a uniform anharmonic molecular chain connecting asymmetrically two thermal reservoirs rectifies heat. This effect is stronger for longer chains, where nonlinear interactions dominate the transfer process. When asymmetry is related to the internal level structure of the molecule, numerical simulations reveal a nontrivial rectification behavior. We could still explain this behavior in terms of an effective system-bath coupling. Our study suggests that heat rectification is a fundamental characteristic of asymmetric nonlinear thermal conductors. This phenomenon is important for heat control in nanodevices and for understanding of energy flow in biomolecules.  相似文献   

6.
This survey concerns the potential inherent in the conformational transition of macromolecules that occurs at an LSCT for the targeted transport of physiologically active compounds linked to these macromolecules. Methods for controlling the LSCT of the polymeric carrier are discussed, and relationships between the biological activity of the compounds being transported and their structure and the structure of the polymeric carrier are examined. Approaches ensuring conservation of biological activity via the repeated transition through LCST and providing removal of all components of the system from a living organism are considered.  相似文献   

7.
The crystallization kinetics of two alloys in the Fe-Ni-P-Si quaternary system have been investigated, with both isothermal and continuous heating experiments, by means of differential scanning calorimetry. Both alloys present two separated crystallization processes. The Johnson-MehlAvrami-Erofeev equation with a rate constant following the Arrhenius behavior gives the best fit of the experimental data. In all processes the value of its JMAE kinetic exponent is not constant. In the nearly stages, n changes steeply revealing the transient nucleation effect to reach values corresponding to a three-dimensional volume growth controlled by diffusion in the central part (0.3<x<0.55). Latter in the transformation n continuously decreases reflecting the saturation of nucleation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V <30%). These all-carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.  相似文献   

9.
In this tutorial review we present in detail recent studies in which molecular junctions were simultaneously probed by conductance measurements and optical spectroscopy methods such as electroluminescence (EL) and Raman scattering. The advantages of combining these experimental approaches to improve our understanding of charge transport through molecular junctions are discussed and routes for future developments are suggested.  相似文献   

10.
Within a generic model, we discuss the possibility of coherent control of charge fluxes in unbiased molecular junctions. The control is induced by resonances between the Rabi frequency due to a pumping laser field and internal characteristic frequencies of pre-designed molecular donor-bridge-acceptor complexes. Two models are considered: a coherently controlled molecular charge pump and a molecular switch. The study generalizes previous consideration of light induced current [M. Galperin and A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005)] and of a molecular electron pump [R. Volkovich and U. Peskin, Phys. Rev. B 83, 033403 (2011)] and accounts for the coherently driven charge transport in an unbiased molecular junction with symmetric coupling to leads. Numerical examples demonstrate the feasibility of the control mechanism for realistic junctions parameters.  相似文献   

11.
The conductance of molecular junctions, formed by breaking gold point contacts dressed with various thiol functionalized organic molecules, is measured at 293 K and at 30 K. In the presence of molecules, individual conductance traces measured as a function of increasing gold electrode displacement show clear steps below the quantum conductance steps of the gold contact. These steps are distributed over a wide range of molecule-dependent conductance values. Histograms constructed from all conductance traces therefore do not show clear peaks either at room or low temperatures. Filtering of the data sets by an objective automated procedure only marginally improves the visibility of such features. We conclude that the geometrical junction to junction variations dominate the conductance measurements.  相似文献   

12.
The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.  相似文献   

13.
Self-complexing molecular systems are obtained when an arm component (a pi-donor) is covalently linked to a preformed macrocycle (a pi-acceptor). The resulting self-complexing compounds are not only attractive in relation to their topology, but also for their potential to undergo reversible movements, i.e., the arm can be driven out of or into the cavity of the linked macrocycle in response to temperature or applied voltage. These structurally sensitive changes render them potential thermosensors or electroswitches.  相似文献   

14.
15.
The rate of escape over the barrier of a double-well potential is estimated for the Lindenberg—Seshadri model, both in the overdamped and underdamped Limit. The internal multiplicative noise terms are shown analytically to play distinct roles in the two regimes so that these cannot be assimilated to an “effective” friction for application purposes.  相似文献   

16.
A semiclassical approach is applied to investigate electron trapping and recombination at gap states in glassy semiconductors. Dependence of transition probability on bare and self-trapping energy is obtained and compared with some earlier discussed dependences.  相似文献   

17.
18.
FTIR spectroscopy of buried interfaces in molecular junctions   总被引:1,自引:0,他引:1  
We demonstrate that ATR-FTIR spectroscopy can be used to record high-quality vibrational spectra of molecules at buried interfaces in metal-molecule-silicon and metal-molecule-metal junctions. This provides quantitative information on the structure and conformation of molecules at buried interfaces, an issue of critical importance to molecular electronics. In the model systems of Au on octadecyltrichlorosilane self-assembled monolayer on Si or mecaptohexadecanoic acid multilayers on Au-covered Si, ATR-FTIR suggests that metal deposition leads to not only conformational disorder within the film but also the direct interaction of metal atoms/clusters with alkyl backbones.  相似文献   

19.
Combining insights from quantum chemistry calculations with master equations, we discuss a mechanism for negative differential resistance (NDR) in molecular junctions, operated in the regime of weak tunnel coupling. The NDR originates from an interplay of orbital spatial asymmetry and strong electron-electron interaction, which causes the molecule to become trapped in a nonconducting state above a voltage threshold. We show how the desired asymmetry can be selectively introduced in individual orbitals in, e.g., oligo(phenyleneethynylene)-type molecules by functionalization with a suitable side group, which is in linear conjugation to one end of the molecule and cross-conjugated to the other end.  相似文献   

20.
The influence of vibrational motion on electron conduction through single molecules bound to metal electrodes is investigated employing first-principles electronic-structure calculations and projection-operator Green’s function methods. Considering molecular junctions where a central phenyl ring is coupled via (alkane)thiol-bridges to gold electrodes, it is shown that – depending on the distance between the electronic π-system and the metal – electronic–vibrational coupling may result in pronounced vibrational substructures in the transmittance, a significantly reduced current as well as a quenching of negative differential resistance effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号