首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multicomponent reaction involving ethylenediaminepalladium(II), 2-pyrimidinol derivatives (L) [L=2-pyrimidinol (a); 4-methyl-2-pyrimidinol (b); 4,6-dimethyl-2-pyrimidinol (c)] and 4,7-phenanthroline (4,7-phen) leads to the formation of heterotopic cyclic metallamacrocycles of the type [Pdn(en)n(mu-N,N'-L)m(mu-N,N'-4,7-phen)n-m](2n-m)+ [n=3, m=1 (3); n=4, m=2 (4); n=6, m=4 (5)]. These species can be obtained by different reaction pathways, including: (i) reaction of ethylenediaminepalladium(ii), L and 4,7-phen building blocks and (ii) reaction of the homotopic species [Pd4(en)4(mu-N,N'-L)4]4+ (1) and [Pd3(en)3(mu-N,N'-4,7-phen)3]6+ (2). The resulting heterotopic metallamacrocycles have been characterised by 1D and 2D 1H NMR spectroscopy. Additionally, species 3c and 4a have been studied by X-ray crystallography. The former one contains almost isosceles triangles of [Pd3(en)3(mu-N,N'-4,6-dimethyl-2-pyrimidinolate)(mu-N,N[prime or minute]-4,7-phen)2]5+ formulation, exhibiting a pinched-cone conformation. 4a contains a tetranuclear parallelogram [Pd4(en)4(mu-N,N'-2-pyrimidinolate)2(mu-N,N'-4,7-phenanthroline)2]6+, exhibiting a 1,3-alternate conformation. The host-guest properties of the here reported species have been studied, showing that they are able to interact with cationic as well as with anionic species.  相似文献   

2.
DFT calculations for the group 15 radicals [PhB(mu-N(t)Bu)2]2M. (M = P, As, Sb, Bi) predict a pnictogen-centered SOMO with smaller contributions to the unpaired spin density arising from the nitrogen and boron atoms. The reactions of Li 2[PhB(mu-NR)2] (R = (t)Bu, Dipp) with PCl 3 afforded the unsolvated complex LiP[PhB(mu-N(t)Bu)2] 2 ( 1a) in low yield and ClP[PhB(mu-NDipp)2] (2), both of which were structurally characterized. Efforts to produce the arsenic-centered neutral radical, [PhB(mu-N (t) Bu) 2] 2As., via oxidation of LiAs[PhB(mu-N(t)Bu)2]2 with one-half equivalent of SO 2Cl 2, yielded the Zwitterionic compound [PhB(mu-N (t) Bu) 2As(mu-N(t)Bu)2B(Cl)Ph] (3) containing one four-coordinate boron center with a B-Cl bond. The reaction of 3 with GaCl3 produced the ion-separated salt, [PhB(mu-N(t)Bu)2] 2As (+)GaCl 4 (-) ( 4), which was characterized by X-ray crystallography. The reduction of 3 with sodium naphthalenide occurred by a two-electron process to give the corresponding anion [{PhB(mu-N(t)Bu)2} 2As] (-) as the sodium salt. Voltammetric investigations of 4 and LiAs[PhB(mu-N (t) Bu) 2] 2 ( 1b) revealed irreversible processes. Attempts to generate the neutral radical [PhB(mu-N(t)Bu)2] 2As. from these ionic complexes via in situ electrolysis did not produce an EPR-active species.  相似文献   

3.
The 1:1 reaction between the cyclodiphosphazane cis-{(o-MeOC(6)H(4)O)P(mu-N(t)Bu)}(2) (1) and AgOTf afforded one-dimensional Ag(I) coordination polymer [Ag{mu-OTf-kappaO,kappaO}{mu-(o-MeOC(6)H(4)O)P(mu-N(t)Bu)-kappaP,kappaP}(2)](infinity) (2) containing bridging cyclodiphosphazane and trifluoromethanesulfonate (OTf) ligands. The 2:1 reaction of and AgOTf leads to the formation of simple mononuclear complex [Ag{OTf-kappaO,kappaO}({(o-MeOC(6)H(4)O)P(mu-N(t)Bu)-kappaP}(2))(2)] (3) in quantitative yield. Reaction of 1 with AgCN produces a strain-free zig-zag coordination polymer [({(o-MeOC(6)H(4)O)P(mu-N(t)Bu)-kappaP,kappaP}(2))(2)Ag(NCAgCN)](infinity) (4) irrespective of reaction stoichiometry and conditions. In complexes 3 and 4 cyclodiphosphazanes coordinate to Ag(I) centers in a monodentate fashion. Single crystal structures were established for the Ag(I) polymers 2 and 4.  相似文献   

4.
Du M  Zhang ZH  Zhao XJ  Xu Q 《Inorganic chemistry》2006,45(15):5785-5792
Four novel Zn(II) and Cd(II) metal-organic coordination polymers with a versatile building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (Hpyt) have been prepared under different conditions. [Zn3(pyt)4(OH)2]n (1) and [Cd(pyt)(HCOO)]n (3) were obtained through a solvothermal method, whereas {[Zn(pyt)2(H2O)(2)].(DMF)2}n (2) and {[Cd(pyt)2].CHCl3}n (4) were isolated under general conditions. X-ray single-crystal diffraction indicates that the anionic ligand pyt adopts a thioamide isomer in 1, 2, and 4, but a thiolate form in 3. Four types of binding modes involving monodentate (eta-N(oxa)), bidentate (mu-N(py),N(oxa), or mu-N(py),S,S) and tridentate (mu-N(py),N(oxa),S) are observed. The discrepancy of the synthetic routes and metal-coordination preferences facilitates the production of the final crystalline materials with distinct network structures, including a 1D zigzag array of 1 with dangling arms, a common 2D (4,4) coordination layer of 2, a decorated 3D alpha-Po network of 3, and an unprecedented (3,6)-connected 3D framework of 4 with a (4(2).6)2(4(2).6(2).8(7).10(2)) topology. Notably, the hydrolysis of DMF solvates leads to the formation of formate ions, being a component in the structure of 3. Complexes 2 and 4 show 1D channels in which the solvates are accommodated, and even after the exclusion of these guests, the porous host frameworks are still retained. Thermal stability and gas adsorption properties have also been studied.  相似文献   

5.
Synthesis and characterization of a new, highly electron-rich, chelating bis(phosphine), based on the ethanediyl-linked inorganic heterocycle [Me(2)Si(mu-N(t)Bu)(2)P], are reported. Treatment of nickel chloride with this bis(phosphine) afforded square-planar cis-[[Me(2)Si(mu-N(t)Bu)(2)PCH(2)](2)NiCl(2)], which features isometric nickel-chloride (2.2220(8) A) and nickel-phosphorus (2.1572(8) A) bonds. The ligand reacted with cis-[(piperidine)(2)Mo(CO)(4)] to form colorless cis-[[Me(2)Si(mu-N(t)Bu)(2)PCH(2)](2)Mo(CO)(4)], which has distorted octahedral geometry and long Mo-P bonds (2.5461(18) A). Because of its potential applications in hydrogenation catalysis cis-[[Me(2)Si(mu-N(t)()Bu)(2)PCH(2)](2)Rh(COD)]BF(4) was synthesized. This square-planar, cationic rhodium(I) complex, having symmetrical Rh-P (2.250(2) A) and Rh-C (2.305(6) A) bonds, is structurally related to bis(phospholano)- and bis(phosphetano)rhodium species.  相似文献   

6.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

7.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

8.
The reduction of [P(2)N(2)]NbCl (where [P(2)N(2)] = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh) with KC(8) under a dinitrogen atmosphere generates the paramagnetic dinuclear dinitrogen complex ([P(2)N(2)]Nb)(2)(mu-N(2)) (2). Complex 2 has been characterized crystallographically and by EPR spectroscopy. Variable-temperature magnetic susceptibility measurements indicate that 2 displays antiferromagnetic coupling between two Nb(IV) (d(1)) centers. A density functional theory calculation on the model complex [(PH(3))(2)(NH(2))(2)Nb](2)(mu-N(2)) was performed. Thermolysis of ([P(2)N(2)]Nb)(2)(mu-N(2)) in toluene generates the paramagnetic bridging nitride species where one N atom of the dinitrogen ligand inserts into the macrocycle backbone to form [P(2)N(2)]Nb(mu-N)Nb[PN(3)] (3) (where [PN(3)] = PhPMe(CHSiMe(2)NSiMe(2)CH(2)P(Ph)CH(2)SiMe(2)NSiMe(2)N)). Complex 3 has been characterized in the solid state as well as by variable-temperature magnetic susceptibility measurements. The reaction of ([P(2)N(2)]Nb)(2)(mu-N(2)) with phenylacetylene displaces the dinitrogen fragment to generate a paramagnetic eta(2)-alkyne complex, [P(2)N(2)]Nb(eta(2)-HCCPh) (4).  相似文献   

9.
Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.  相似文献   

10.
The reaction of [(C5Me5)2Ln][(mu-Ph)2BPh2] complexes with the lithium salt of (trimethylsilyl)diazomethane, Li[Me3SiCN2], gave products formulated as the dimeric isocyanotrimethylsilyl amide complexes {(C5Me5)2Ln[mu-N(SiMe3)NC]}2 (Ln = Sm, 1; La, 2). Reactions of (C5Me5)2Sm and [(C5Me5)2Sm(mu-H)]2 with Me3SiCHN2 also form 1. Complexes 1 and 2 react with Me3CCN to form the 1,2,3-triazolato complexes (C5Me5)2Ln(NCCMe3)[NNC(SiMe3)C(CMe3)N] (Ln = Sm, 3; La, 4). Complex 2 reacts with Me3SiN3 to make the isocyanide ligated azide complex {(C5Me5)2La[CNN(SiMe3)2](mu-N3)}3, 5.  相似文献   

11.
LiSc(BH4)4 has been prepared by ball milling of LiBH4 and ScCl3. Vibrational spectroscopy indicates the presence of discrete Sc(BH4)4(-) ions. DFT calculations of this isolated complex ion confirm that it is a stable complex, and the calculated vibrational spectra agree well with the experimental ones. The four BH4(-) groups are oriented with a tilted plane of three hydrogen atoms directed to the central Sc ion, resulting in a global 8 + 4 coordination. The crystal structure obtained by high-resolution synchrotron powder diffraction reveals a tetragonal unit cell with a = 6.076 A and c = 12.034 A (space group P-42c). The local structure of the Sc(BH4)4(-) complex is refined as a distorted form of the theoretical structure. The Li ions are found to be disordered along the z axis.  相似文献   

12.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

13.
(C5Me5R)2Ta2Cl4 (d2-d2) disproportionates under dinitrogen to [(C5Me4R)TaCl2]2(mu-N2) and the D3h cluster cation (C5Me4R)3Ta3(mu-Cl)6+ with anionic (C5Me4R)TaCl4-.  相似文献   

14.
The reactions of [Li(2)[PhB(N(t)Bu)(2)]](2) with GaCl(3) in various stoichiometries yield [Li(thf)(4)][PhB(mu-N(t)Bu)(2)GaCl(2) x GaCl(3)] (1), [PhB(mu-N(t)Bu)(2)GaCl](2) (2), and [mu-Li(OEt(2))[PhB(N(t)Bu)(2)]Ga] (3a), a series of complexes in which the three chloride ligands are successively replaced by the dianion [PhB(N(t)Bu)(2)](2-). The X-ray structures of 1, 2, and 3a show that the boraamidinate ligand adopts an N,N'-chelating mode. In the ion-separated complex 1, one of the nitrogen atoms is coordinated to a GaCl(3) molecule. The related indium complexes [mu-LiCl(thf)(2)][PhB(mu-N(t)Bu)(2)InCl](2) (4) and [mu-Li(OEt(2))[PhB(mu-N(t)Bu)(2)]In] (3b) were obtained in a similar manner. Complex 4 is the indium analogue of 2 with the incorporation of a bissolvated LiCl molecule. In 3a and 3b the spirocyclic [[PhB(mu-N(t)Bu)(2)](2)M](-) (M = Ga, In) anions are N,N'-chelated to the [Li(OEt(2))](+) counterion. Prolonged reactions result in the formation of [PhB(mu-N(t)Bu)(2)GaCl][(t)BuN(H)GaCl(2)] (5) and [[PhB(mu-N(t)Bu)(2)InCl][(t)BuN(H)InCl(2)][mu-LiCl(OEt(2))(2)]] (6), respectively. The X-ray structures of 5 and 6 reveal bicyclic structures which formally involve the entrapment of the monomers (t)BuN(H)MCl(2) by a four-membered BN(2)M ring (M = Ga, In). The synthesis and X-ray structure of Cl(2)Ga[mu-N(H)(t)Bu](2)GaCl(2) are also reported.  相似文献   

15.
Reactions of (RNH)(3)PNSiMe(3) (3a, R = (t)()Bu; 3b, R = Cy) with trimethylaluminum result in the formation of {Me(2)Al(mu-N(t)Bu)(mu-NSiMe(3))P(NH(t)()Bu)(2)]} (4) and the dimeric trisimidometaphosphate {Me(2)Al[(mu-NCy)(mu-NSiMe(3))P(mu-NCy)(2)P(mu-NCy)(mu-NSiMe(3))]AlMe(2)} (5a), respectively. The reaction of SP(NH(t)Bu)(3) (2a) with 1 or 2 equiv of AlMe(3) yields {Me(2)Al[(mu-S)(mu-N(t)Bu)P(NH(t)()Bu)(2)]} (7) and {Me(2)Al[(mu-S)(mu-N(t)()Bu)P(mu-NH(t)Bu)(mu-N(t)Bu)]AlMe(2)} (8), respectively. Metalation of 4 with (n)()BuLi produces the heterobimetallic species {Me(2)Al[(mu-N(t)Bu)(mu-NSiMe(3))P(mu-NH(t)()Bu)(mu-N(t)()Bu)]Li(THF)(2)} (9a) and {[Me(2)Al][Li](2)[P(N(t)Bu)(3)(NSiMe(3))]} (10) sequentially; in THF solutions, solvation of 10 yields an ion pair containing a spirocyclic tetraimidophosphate monoanion. Similarly, the reaction of ((t)BuNH)(3)PN(t)()Bu with AlMe(3) followed by 2 equiv of (n)BuLi generates {Me(2)Al[(mu-N(t)Bu)(2)P(mu(2)-N(t)Bu)(2)(mu(2)-THF)[Li(THF)](2)} (11a). Stoichiometric oxidations of 10 and 11a with iodine yield the neutral spirocyclic radicals {Me(2)Al[(mu-NR)(mu-N(t)Bu)P(mu-N(t)Bu)(2)]Li(THF)(2)}(*) (13a, R = SiMe(3); 14a, R = (t)Bu), which have been characterized by electron paramagnetic resonance spectroscopy. Density functional theory calculations confirm the retention of the spirocyclic structure and indicate that the spin density in these radicals is concentrated on the nitrogen atoms of the PN(2)Li ring. When 3a or 3b is treated with 0.5 equiv of dibutylmagnesium, the complexes {Mg[(mu-N(t)()Bu)(mu-NH(t)()Bu)P(NH(t)Bu)(NSiMe(3))](2)} (15) and {Mg[(mu-NCy)(mu-NSiMe(3))P(NHCy)(2)](2)} (16) are obtained, respectively. The addition of 0.5 equiv of MgBu(2) to 2a results in the formation of {Mg[(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)](2)} (17), which produces the hexameric species {[MgOH][(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)]}(6) (18) upon hydrolysis. Compounds 4, 5a, 7-11a, and 15-17 have been characterized by multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy and, in the case of 5a, 9a.2THF, 11a, and 18, by X-ray crystallography.  相似文献   

16.
朱海燕  李赛  陈元振  朱杰武  柳永宁 《结构化学》2011,30(11):1640-1645
With respect to the first principle calculations, we predicted that two pairs of transition metals (e.g., Sc2 and Ti2) can be interbedded between two tetranitrogen rings to form two sandwich-like binuclear complexes respectively (e.g. N4Sc2N4 and N4Ti2N4). These two complexes can adsorb up to eight and ten hydrogen molecules, corresponding to a gravimetric storage capacity of 7.7 and 9.9 wt%, respectively. These sandwich-type complexes proposed in this work are favorable for reversible adsorption and desorption of hydrogen at ambient conditions. The results are helpful for the development of a new class of high-capacity hydrogen-storage media.  相似文献   

17.
The reaction of mono- or dichloro-dimolybdenum(III) complexes [Mo2Cp2(mu-SMe)2(mu-Cl)(mu-Y)] (Cp=eta5-C5H5; 1, Y=SMe; 2, Y=PPh2; 3, Y=Cl) with NaBH4 at room temperature gave in high yields tetrahydroborato (8), hydrido (9) or metallaborane (12) complexes depending on the ancillary ligands. The correct formulation of derivatives and has been unambigously determined by X-ray diffraction methods. That of the hydrido compound 9 has been established in solution by NMR analysis and confirmed by an X-ray study of the mu-azavinylidene derivative [Mo2Cp2(mu-SMe)2(mu-PPh2)(mu-N=CHMe)] (10) obtained from the insertion of acetonitrile into the Mo-H bond of 9. Reaction of NaBH4 with nitrile derivatives, [Mo2Cp2(mu-SMe)4-n(CH3CN)2n]n+(5, n=1; 6 n=2), afforded the tetrahydroborato compound 8, together with a mu-azavinylidene species [Mo2Cp2(mu-SMe)3(mu-N=CHMe)](14), when n=1, and the metallaborane complex 12, together with a mixed borohydrato-azavinylidene derivative [Mo2Cp2(mu-SMe)2(mu-BH4)(mu-N=CHMe)] (13), when n=2. The molecular structures of these complexes have been confirmed by X-ray analysis. Preparations of some of the starting complexes (3 and 4) are also described, as are the molecular structures of the precursors [Mo2Cp2(mu-SMe)2(mu-X)(mu-Y)] (1, X/Y=Cl/SMe; 2, X/Y=Cl/PPh2; 4, X/Y=SMe/PPh2).  相似文献   

18.
The key intermediate in dinitrogen cleavage by Mo(N[t-Bu]Ar)3, 1 (Ar = 3,5-C6H3Me2), has been characterized by a pair of single crystal X-ray structures. For the first time, the X-ray crystal structure of (mu-N2)[Mo(N[t-Bu]Ar)3]2, 2, and the product of homolytic fragmentation of the NN bond, NMo(N[t-Bu]Ar)3, are reported. The structural features of 2 are compared with previously reported EXAFS data. Moreover, contrasts are drawn between theoretical predictions concerning the structural and magnetic properties of 2 and those reported herein. In particular, it is shown that 2 exists as a triplet (S = 1) at 20 degrees C. Further insight into the bonding across the MoNNMo core of the molecule is obtained by the synthesis and structural characterization of the one- and two-electron oxidized congeners, (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4], 2[B(Ar(F))4] (Ar(F) = 3,5-C6H3(CF3)2) and (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4]2, 2[B(Ar(F))4]2, respectively. Bonding in these three molecules is discussed in view of X-ray crystallography, Raman spectroscopy, electronic absorption spectroscopy, and density functional theory. Combining X-ray crystallography data with Raman spectroscopy studies allows the NN bond polarization energy and NN internuclear distance to be correlated in three states of charge across the MoNNMo core. For 2[B(Ar(F))4], bonding is symmetric about the mu-N2 ligand and the NN polarization is Raman active; therefore, 2[B(Ar(F))4] meets the criteria of a Robin-Day class III mixed-valent compound. The redox couples that interrelate 2, 2(+), and 2(2+) are studied by cyclic voltammetry and spectroelectrochemistry. Insights into the electronic structure of 2 led to the discovery of a photochemical reaction that forms NMo(N[t-Bu]Ar)3 and Mo(N[t-Bu]Ar)3 through competing NN bond cleavage and N2 extrusion reaction pathways. The primary quantum yield was determined to be Phi(p) = 0.05, and transient absorption experiments show that the photochemical reaction is complete in less than 10 ns.  相似文献   

19.
The P-anilino-P-chalcogeno(imino)diazasilaphosphetidines [Me(2)Si(mu-N(t)Bu)(2)P=E(NHPh)] (E = O (3), S (4), Se (5), N-p-tolyl (6)) were synthesized by oxidizing the P-anilinodiazasilaphosphetidine [Me(2)Si(N(t)Bu)(2)P(NHPh)] (2) with cumene hydroperoxide, sulfur, selenium, and p-tolyl azide, respectively. The lithium salt of 4 reacted with thallium monochloride to produce ([Me(2)Si(mu-N(t)Bu)(2)P=S(NPh)-kappaN-kappaS]Tl)(7), which features a two-coordinate thallium atom. Treatment of 4-6 with AlMe(3) gave the monoligand dimethylaluminum complexes ([Me(2)Si(mu-N(t)Bu)(2)P=E(NPh)-kappaN-kappaE]AlMe(2)) (E = S (8), Se (9), N-p-tolyl (10)), respectively. In these complexes the aluminum atom is tetrahedrally coordinated by one chelating ligand and two methyl groups, as a single-crystal X-ray analysis of 8 showed. A 2 equiv amount of 4-6 reacted with diethylzinc to produce the homoleptic diligand complexes ([Me(2)Si(mu-N(t)Bu)(2)P=E(NPh)-kappaN-kappaE](2)Zn)(E = S (11), Se (12), N-p-tolyl (13)). A crystal-structure analysis of 11 revealed a linear tetraspirocycle with a tetrahedrally coordinated, central zinc atom.  相似文献   

20.
Li3Sc2(PO4)3因具有有利的离子传导通道、低的电子电导率和高的稳定性而成为全固态锂离子电池用固体电解质最具竞争力的材料之一,然而这一化合物只有在245℃以上的γ相才具有快离子传导特性。人们主要采用Zr4+、Ti4+等阳离子部分取代其中的Sc3+以改善材料的室温电导率,有关该化合物PO43-阴离子替代的报道还很少。本研究试图利用机械研磨技术,通过向Li3Sc2(PO4)3原料混合物中加入适量SiO2,以期能够实现对该化合物的部分阴离子替代。研究结果表明:所制备的Li3+xSc2(PO4)3-x(SiO4)x(x=0~0.6)系列化合物在x=0.15时电导率达到最大值,σ298=9.55×10-4 S.m-1,离子传导激活能达到最小值45.06 kJ.mol-1。29Si MAS-NMR测试结果证实所加入的SiO2主要以[SiO4]四面体形式存在替代Li3Sc2(PO4)3中部分[PO4]四面体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号