共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yang J Li GD Cao JJ Yue Q Li GH Chen JS 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(11):3248-3261
A series of Pb(II) coordination polymers [Pb(ndc)(dpp)] (1), [Pb(ndc)(ptcp)].0.5 H2O (2), [Pb(ndc)(dppz)] (3), [Pb(ndc)(tcpn)(2)] (4), [Pb2(ndc)2(tcpp)] (5), [Pb(Hndc)2].H2O (6), [Pb(ndc)(dma)] (7), [Pb(bdc)(dma)] (8), [Pb(trans-chdc)(H2O)] (9), and [Pb2(cis-chdc)2].NH(CH3)2 (10), where ndc=1,4-naphthalenedicarboxylate, dpp=4,7-diphenyl-1,10-phenanthroline, ptcp=2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene, dppz=dipyrido[3,2-a:2',3'-c]phenazine, tcpn=2-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)naphthol, tcpp=4-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)phenol, dma=N,N-dimethylacetamide, bdc=1,4-benzenedicarboxylate, and chdc=1,4-cyclohexanedicarboxylate, have been synthesized from a hydrothermal or solvothermal reaction system by varying the ligands or the solvents. Compounds 1-5 crystallize with an N-donor chelating ligand and an aromatic dicarboxylate linker. Compounds 1-4 are 1D polymers with different pi-pi stacking interactions, whereas compound 5 consists of 2D layers. The structures of compounds 7, 8, and 10 are 3D frameworks formed by connection of the Pb(II) centers by organic acid ligands. Compound 7 is chiral although the ndc ligand is achiral, while the framework of 8 is a typical 3D (3,4)-connected net. Compound 10 is the first example of Pb(II) wheel cluster [Pb(8)O(8)] units bridged by carboxylate groups. Compound 6 contains 1D chains which are further extended to a 3D structure by pi-pi interactions. Compound 9 consists of a 2D network constructed by Pb(II) centers and trans-chdc ligands. The structural differences between 7 and 8 and between 9 and 10 indicate the importance of solvents for framework formation of the coordination polymers. By varying the solvent the cis and trans conformations of H(2)chdc in 9 and 10 were separated completely. The photoluminescence and nonlinear optical properties of the coordination polymers have also been investigated. 相似文献
3.
Square‐Planar Ruthenium(II) Complexes: Control of Spin State by Pincer Ligand Functionalization 下载免费PDF全文
Dr. Bjorn Askevold Dr. Marat M. Khusniyarov Dr. Wolfgang Kroener Dr. Klaus Gieb Prof. Paul Müller Dr. Eberhardt Herdtweck Dr. Frank W. Heinemann Dr. Martin Diefenbach Prof. Max C. Holthausen Veacheslav Vieru Prof. Liviu F. Chibotaru Prof. Sven Schneider 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(2):579-589
Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2CH2PtBu2)2}], [RuCl{N(CHCHPtBu2)(CH2CH2PtBu2)}], and [RuCl{N(CHCHPtBu2)2}], in which the ruthenium(II) ions are in the extremely rare square‐planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low‐lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non‐magnetic ground states arise for the two intermediate‐spin complexes owing to unusually large zero‐field splitting (D>+200 cm?1). The change in ground state electronic configuration is attributed to tailored pincer ligand‐to‐metal π‐donation within the PNP ligand series. 相似文献
4.
Inside Cover: Square‐Planar Ruthenium(II) Complexes: Control of Spin State by Pincer Ligand Functionalization (Chem. Eur. J. 2/2015) 下载免费PDF全文
Dr. Bjorn Askevold Dr. Marat M. Khusniyarov Dr. Wolfgang Kroener Dr. Klaus Gieb Prof. Paul Müller Dr. Eberhardt Herdtweck Dr. Frank W. Heinemann Dr. Martin Diefenbach Prof. Max C. Holthausen Veacheslav Vieru Prof. Liviu F. Chibotaru Prof. Sven Schneider 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(2):474-474
5.
6.
Francoise Sauriol Dr. Elizabeth Wong Angela M. H. Leung Irja Elliott Donaghue Michael C. Baird Prof. Tebikie Wondimagegn Dr. Tom Ziegler Prof. 《Angewandte Chemie (International ed. in English)》2009,48(18):3342-3345
Caught in the act : An alkyl alkene ZrIV complex (see picture; Cp=C5H5) has been synthesized and characterized for the first time. The alkene bonding mode is highly asymmetric, and C2 is quite carbocationic. There is also evidence for rotation about the C1? C2 bond. This extremely unusual complex provides an exemplar of previously unknown intermediates in Ziegler–Natta and carbocationic polymerization reactions of alkenes.
7.
8.
Preparative procedures were developed for the synthesis of new transmethylated bis-cyclopentadienyl ligands with phosphine-containing
bridging fragments. These ligands were isolated as the dilithium salts Li2[(C5Me4CH2)2PPh] (1) and Li2[(C5Me4CH2CH2)2PPh] (3). Phosphorus-substituted 3-ansa-zirconocene dichloride [(C5Me4CH2)2PPh]ZrCl2 was synthesized starting from 1. The NMR spectroscopic data provide evidence for the absence of the Zr←P coordination interaction in solution. A straightforward
approach to 5-ansa-zirconocene dichloride [(C5Me4CH2CH2)2PPh]ZrCl2 starting from lithium salt 3 and ZrCl4 was shown to be impossible.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1775–1779, September, 2007. 相似文献
9.
The synthesis of a new class of chiral C(2)-symmetric tridentate N-donor ligands, a series of 2,5-bis(2-oxazolinylmethyl)pyrroles, was achieved in four steps starting from the known 2,5-bis(trimethylammoniomethyl)pyrrole diiodide (1). Reaction of 1 with NaCN in dimethyl sulfoxide gave 2,5-bis(cyanomethyl)pyrrole (2) cleanly, which was then cyclized with amino alcohols to give the 2,5-bis(2-oxazolinylmethyl)pyrroles 3 a-c (3 a: bis[2-(4,4'-dimethyl-5-hydrooxazolyl)methyl]pyrrole; 3 b: (S,S)-bis[2-(4-isopropyl-4,5-dihydrooxazolyl)methyl]pyrrole; 3 c: (S,S)-bis[2-(4-tertiobutyl-4,5-dihydrooxazolyl)methyl]pyrrole). Metallation of 3 a-c with one molar equivalent of tBuLi and their subsequent reaction with a stoichiometric amount of [PdCl(2)(cod)] (cod=cyclooctadiene) gave the palladium(II) complexes 4 a-c. Whereas the arrangement of the N-donor atoms in the crystallographically characterized complex 4 a is almost ideally square planar, all three heterocycles in the ligand are twisted out of the coordination plane, leading to a chiral conformation of the complex. Attempts to freeze out these two conformers in solution at 200 K (NMR) failed, and this suggests that the activation barrier for conformational racemization is significantly below 10 kcal mol(-1). The palladium-induced shift of two double bonds as well as the porphyrinogen/porphyrin-type oxidation of the complexes 4 a-c led to the planarization of the 2,5-bis(oxazolinylmethyl)pyrrolide ligands in the palladium(II) complexes 5 a-c, 6 b, and 6 c, and to the formation of rigid chiral C(2)-symmetric systems as shown by X-ray diffraction studies. The formation of the conjugated system of double bonds in this transformation is accompanied by the emergence of an intra-ligand chromophore. This is evident in the absorption spectrum of 6 c which displays an intense band with a maximum at 485 nm attributable to an intra-ligand pi*<--pi transition and a characteristic vibrational progression of nu approximately 1350 cm(-1). Complexes 4 b and 4 c were tested in the catalytic asymmetric Michael addition of ethyl 2-cyanopropionate to methyl vinylketone (catalyst loading: 1 mol %) and were found to give maximum ee values of 43 % (4 b) and 21 % (4 c) at low conversions. 相似文献
10.
Dr. Nicolas Grimblat Dr. Ariel M. Sarotti 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(35):12246-12261
The calculations of NMR properties of molecules using quantum chemical methods have deeply impacted several branches of organic chemistry. They are particularly important in structural or stereochemical assignments of organic compounds, with implications in total synthesis, stereoselective reactions, and natural products chemistry. In studying the evolution of the strategies developed to support (or reject) a structural proposal, it becomes clear that the most effective and accurate ones involve sophisticated procedures to correlate experimental and computational data. Owing to their relatively high mathematical complexity, such calculations (CP3, DP4, ANN‐PRA) are often carried out using additional computational resources provided by the authors (such as applets or Excel files). This Minireview will cover the state‐of‐the‐art of these toolboxes in the assignment of organic molecules, including mathematical definitions, updates, and discussion of relevant examples. 相似文献
11.
Alpar Pöllnitz Sevil Irisli Cristian Silvestru Anca Silvestru 《Phosphorus, sulfur, and silicon and the related elements》2013,188(4):910-919
The new organophosphorus proligand (OPPh2)(O2SMe)NR (R = C6H3Pri 2–2,6) (3) was prepared as a white crystalline solid by reacting the lithiated compound Li[Ph2P(O)NR] with MeSO2Cl in a 1:1 molar ratio. The precursor Ph2P(O)NHR (1), as well as its thio analogue Ph2P(S)NHR (2), were obtained in the reaction between the lithiated amine RNHLi and the corresponding organophosphorus chloride. All compounds were characterized by multinuclear (1H, 13C, and 31P) NMR spectroscopy. The molecular structures of 1–3 were established by single-crystal X-ray diffraction. A zigzag polymeric chain is formed in the crystals of 1 and 2 by hydrogen N–H···X (X = O, S) bonding, while the crystal of 3 contains discrete monomeric units with a syn–syn conformation of the O?P(C)2–N–S(C)(?O)2 skeleton. Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file. 相似文献
12.
Henry DJ Coote ML Gómez-Balderas R Radom L 《Journal of the American Chemical Society》2004,126(6):1732-1740
The barriers, enthalpies, and rate constants for the addition of methyl radical to the double bonds of a selection of alkene, carbonyl, and thiocarbonyl species (CH(2)=Z, CH(3)CH=Z, and (CH(3))(2)C=Z, where Z = CH(2), O, or S) and for the reverse beta-scission reactions have been investigated using high-level ab inito calculations. The results are rationalized with the aid of the curve-crossing model. The addition reactions proceed via early transition structures in all cases. The barriers for addition of methyl radical to C=C bonds are largely determined by the reaction exothermicities. Addition to the unsubstituted carbon center of C=C double bonds is favored over addition to the substituted carbon center, both kinetically (lower barriers) and thermodynamically (greater exothermicities). The barriers for addition to C=O bonds are influenced by both the reaction exothermicity and the singlet-triplet gap of the substrate. Addition to the carbon center is favored over addition to the oxygen, also both thermodynamically and kinetically. For the thiocarbonyl systems, addition to the carbon center is thermodynamically favored over addition to sulfur. However, in this case, the reaction is contrathermodynamic, addition to the sulfur center having a lower barrier due to spin density considerations. Entropic differences among corresponding addition and beta-scission reactions are relatively minor, and the differences in reaction rates are thus dominated by differences in the respective reaction barriers. 相似文献
13.
Jakob T. Nielsen Dr. Morten Bjerring Dr. Martin D. Jeppesen Ronnie O. Pedersen Jan M. Pedersen Dr. Kim L. Hein Thomas Vosegaard Dr. Troels Skrydstrup Prof. Daniel E. Otzen Prof. Niels C. Nielsen Prof. 《Angewandte Chemie (International ed. in English)》2009,48(12):2118-2121
The fibril structure formed by the amyloidogenic fragment SNNFGAILSS of the human islet amyloid polypeptide (hIAPP) is determined with 0.52 Å resolution. Symmetry information contained in the easily obtainable resonance assignments from solid‐state NMR spectra (see picture), along with long‐range constraints, can be applied to uniquely identify the supramolecular organization of fibrils.
14.
Dr. David E. Herbert Adam D. Miller Prof. Oleg V. Ozerov 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(25):7696-7704
Neutral, mono‐, and dicationic phosphorus(III) compounds are accessible with a supporting PNP pincer ligand (PNP=[4‐Me‐2‐iPr2P‐C6H3)2N]). Reaction of (PNP)H with PCl3 and nBu3N furnished (PNP)PCl2 ( 1 ), which displays a highly temperature‐dependent structure in solution. Synthesis and characterization by NMR spectroscopy and X‐ray crystallography of Cl/Br‐scrambled derivatives, a monocationic derivative [(PNP)PCl][HCB11H11] ( 4 ), and the dicationic derivatives [(PNP)P][OTf]2 ( 5 ), [(PNP)P][B(C6F5)4]2 ( 6 ), [(PNP)P][B12Cl12] ( 7 ) established that 1 not only undergoes several fluxional processes in solution but also possesses a temperature‐dependent ground state structure. Reaction of 1 with a Ni0 source initially leads to a phosphine–phosphinidene complex, followed by thermal generation of P4. 相似文献
15.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent. 相似文献
16.
Burai L Tóth E Moreau G Sour A Scopelliti R Merbach AE 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(6):1394-1404
Eu(II) complexes are potential candidates for pO(2)-responsive contrast agents in magnetic resonance imaging. In this regard, we have characterized two novel macrocyclic Eu(II) chelates, [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) (H(4)DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, H(4)TETA=1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) in terms of redox and thermodynamic complex stability, proton relaxivity, water exchange, rotation and electron spin relaxation. Additionally, solid-state structures were determined for the Sr(II) analogues. They revealed no inner-sphere water in the TETA and one inner-sphere water molecule in the DOTA complex. This hydration pattern is retained in solution, as the (17)O chemical shifts and (1)H relaxation rates proved for the corresponding Eu(II) compounds. The thermodynamic complex stability, determined from the formal redox potential and by pH potentiometry, of [Eu(II)(DOTA)(H(2)O)](2-) (lg K(Eu(II))=16.75) is the highest among all known Eu(II) complexes, whereas the redox stabilities of both [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) are inferior to that of 18-membered macrocyclic Eu(II) chelates. Variable-temperature (17)O NMR, NMRD and EPR studies yielded the rates of water exchange, rotation and electron spin relaxation. Water exchange on [Eu(II)(DOTA)(H(2)O)](2-) is remarkably fast (k298(ex)=2.5 x 10(9) s(-1)). The near zero activation volume (DeltaV++ =+0.1+/-1.0 cm(3) mol(-1)), determined by variable-pressure (17)O NMR spectroscopy, points to an interchange mechanism. The fast water exchange can be related to the low charge density on Eu(II), to an unexpectedly long M-O(water) distance (2.85 A) and to the consequent interchange mechanism. Electron spin relaxation is considerably slower on [Eu(II)(DOTA)(H(2)O)](2-) than on the linear [Eu(II)(DTPA)(H(2)O)](3-) (H(5)DTPA=diethylenetriaminepentaacetic acid), and this difference is responsible for its 25 percent higher proton relaxivity (r(1)=4.32 mM(-1) s(-1) for [Eu(II)(DOTA)(H(2)O)](2-) versus 3.49 mM(-1) s(-1) for [Eu(II)(DTPA)(H(2)O)](3-); 20 MHz, 298 K). 相似文献
17.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6−, L2 = C6H3(tBuOCH2)2-2,6−) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl]− (1) and [Ph2L2Sn]+[OTf]− (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose. 相似文献
18.
19.
Kocher N Leusser D Murso A Stalke D 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(15):3622-3631
The iminophosphorane Ph(2)P(CH(2)Py)(NSiMe(3)) (1) was treated with deprotonating alkali metal reagents to give [(Et(2)O)Li[Ph(2)P(CHPy)(NSiMe(3))]] (2), [[Ph(2)P(CH(2)Py)(NSiMe(3))]Li[Ph(2)P(CHPy)(NSiMe(3))]] (3) and [[Ph(2)P(CH(2)Py)(NSiMe(3))]Na[Ph(2)P(CHPy)(NSiMe(3))]] (4). We report their coordination behaviour in solid-state structures and NMR spectroscopic features in solution. Furthermore, we furnish experimental evidence against hypervalency of the phosphorus atom in iminophosphoranes from experimental charge-density studies and subsequent topological analysis. The topological properties, correlated to the results from NMR spectroscopic investigations, illustrate that the formal P=N double bond is better written as a polar P(+)--N(-) single bond. Additionally, the effects of metal coordination on the bonding parameters of the iminophosphorane and the related anion are discussed. 相似文献