首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route from hexacyanometalates [M(CN)(6)](3-) (M=Cr(III), Co(III)) cores to well-defined heptanuclear complexes. By changing the nature of the metallic cations and using a localised orbital model it is possible to control and to tune the ground state spin value. Thus, with M=Cr(III), d(3), S=3/2, three heptanuclear species were built and characterised by mass spectrometry in solution, by single-crystal X-ray diffraction and by powder magnetic susceptibility measurements, [Cr(III)(CNbondM'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II), L(n)=polydentate ligand), showing spin ground states S(G)=9/2 [Cu(II)], with ferromagnetic interactions J(Cr,Cu)=+45 cm(-1), S(G)=15/2 [Ni(II)] and J(Cr,Ni)=+17.3 cm(-1), S(G)=27/2 [Mn(II)], with an antiferromagnetic interaction J(Cr,Mn)=-9 cm(-1), (interaction Hamiltonian H=-J(Cr,M) [S(Cr)Sigma(i)S(M)(i)], i=1-6). With M=Co(III), d(6), S=0, the heptanuclear analogues [Co(III)(CN-M'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II)) were similarly synthesised and studied. They present a singlet ground state and allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

2.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

3.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

4.
Kou HZ  Zhou BC  Wang RJ 《Inorganic chemistry》2003,42(23):7658-7665
A series of cyano-bridged heterotrimetallic complexes [CuL](2)Ln(H(2)O)(2)M(CN)(6).7H(2)O have been synthesized by the reactions of CuL (L(2)(-) = dianion of 1,4,8,11-tetraazacyclotradecane-2,3-dione), Ln(3+) (Ln = Gd or La), and [M(CN)(6)](3)(-) (M = Co, Fe, or Cr). X-ray diffraction analysis reveals that these complexes are isostructural and have a novel chain structure. The Ln(3+) ion is eight-coordinated by six oxygen atoms of two CuL and two water molecules and two nitrogen atoms of the bridging cyano ligands of two [M(CN)(6)](3)(-), while the [M(CN)(6)](3)(-) anion connects two Ln(3+) using two trans-CN(-) ligands giving rise to a chainlike structure. In the chain, every CuL group tilts toward the CN(-) ligand of adjacent [M(CN)(6)](3)(-) with the Cu-N(cyano) contacts ranging from 2.864(6) to 2.930(6) A. Magnetic studies on the CuGdCo complex (1) indicate the presence of ferromagnetic coupling between Cu(II) and Gd(III). The CuLaCr (5) and CuLaFe (2) complexes exhibit ferromagnetic interaction between paramagnetic Cu(II) and Cr(III)/Fe(III) ions through the weak cyano bridges (Cu-N(cyano) = 2.930(6) A for 2). A global ferromagnetic interaction is operative in the CuGdFe complex (3) with the concurrence of dominant ferromagnetic Cu(II)-Gd(III) and minor antiferromagnetic Gd(III)-Fe(III) as well as the ferromagnetic Cu(II)-Fe(III) interaction. For the CuGdCr complex (4), an overall antiferromagnetic behavior was observed, which is attributed to the presence of dominant antiferromagnetic Cr(III)-Gd(III) coupling and the minor ferromagnetic Cu(II)-Gd(III) and Cu(II)-Cr(III) interaction. Moreover, a spin frustration phenomenon was found in complex 4, which results from the ferro-ferro-antiferromagnetic exchanges in the trigonal Cu-Gd-Cr units. The magnetic susceptibilities of these complexes were simulated using suitable models. The magneto-structural correlation was investigated. These complexes did not show a magnetic phase transition down to 1.8 K.  相似文献   

5.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

6.
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) ?, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) ?, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) ?, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) ?, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) ?, b = 16.225(4) ?, c = 18.371(5) ?, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.  相似文献   

7.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

8.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

9.
The electron transfer series of complexes [Cr((t)bpy)(3)](n)(PF(6))(n) (n = 3+, 2+, 1+, 0 (1-4)) has been synthesized and the molecular structures of 1, 2, and 3 have been determined by single-crystal X-ray crystallography; the structure of 4 has been investigated using extended X-ray absorption fine structure (EXAFS) analysis. Magnetic susceptibility measurements (4-300 K) established an S = 3/2 ground state for 1, an S = 1 ground state for 2, an S = 1/2 ground state for 3, and an S = 0 ground state for 4. The electrochemistry of this series in CH(3)CN solution exhibits three reversible one-electron transfer waves. UV-vis/NIR spectra and Cr K-edge X-ray absorption spectra (XAS) are reported. The same experimental techniques have been applied for [Cr(III)(tacn)(2)]Br(3)·5H(2)O (5) and [Cr(II)(tacn)(2)]Cl(2) (6), which possess an S = 3/2 and an S = 2 ground state, respectively (tacn = 1,4,7-triazacyclononane, a tridentate, pure σ-donor ligand). The Cr K-edge XAS spectra of the corresponding complexes K(4)[Cr(II)(CN)(6)]·10H(2)O (S = 1) (7) and K(3)[Cr(III)(CN)(6)] (S = 3/2) (8) have also been recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. The molecular and electronic structures of the anionic members of the series [Cr(bpy)(3)](1-,2-,3-) have also been calculated. It is unequivocally shown that all members of the electron transfer series 1-4 and [Cr(bpy)(3)](n) (n = 3+, 2+, 1+, 0, 1-, 2, 3-) possess a central Cr(III) ion ((t(2g))(3), S = 3/2). The three N,N'-coordinated neutral (bpy(0)) ligands in the trication 1 and [Cr(III)(bpy)(3)](3+) are one-electron reduced in a stepwise fashion to localized one, two, and three π-radical anions (bpy(?))(1-) in the dicationic, monocationic, and neutral species, respectively. Complexes 2 and [Cr(bpy)(3)](2+) cannot be described as low-spin Cr(II) species; they are in fact best described as [Cr(III)((t)bpy(?))((t)bpy(0))(2)](2+) and [Cr(III)(bpy(?))(bpy(0))(2)](2+) species. Further one-electron reductions yield one, two, and three diamagnetic (bpy(2-))(2-) dianions in the mono-, di-, and trianion. Thus, [Cr(III)(bpy(2-))(3)](3-) is a normal Werner-type Cr(III) (!) species. In all complexes containing (bpy(?))(1-) ligands, the ligand spins are strongly antiferromagnetically coupled to the spins of the central Cr(III) ion (d(3), S(Cr) = 3/2) affording the observed ground states given above. Thus, all redox chemistry of [Cr(bpy)(3)](n) complexes is ligand-based and documents that the ligand 2,2'-bipyridine is a redox noninnocent ligand; it exists in three oxidation levels in these complexes: as N,N'-coordinated neutral (bpy(0)), monoanionic π-radical (bpy(?))(1-), and diamagnetic dianionic (bpy(2-))(2-).  相似文献   

10.
A series of isostructural cyano-bridged Mn(III)(h.s.)-M(III)(l.s.) alternating chains, [Mn(III)(5-TMAMsalen)M(III)(CN)(6)]?4H(2)O (5-TMAMsalen(2-)=N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate), Mn(III)(h.s.)=high-spin Mn(III), M(III)(l.s.)=low-spin Co(III), Mn-Co; Fe(III), Mn-Fe; Mn(III), Mn-Mn; Cr(III), Mn-Cr) was synthesized by assembling [Mn(III)(5-TMAMsalen)](3+) and [M(III)(CN)(6)](3-). The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [-Mn(III)-NC-M(III)-CN-] repeating motif, for which the -NC-M(III)-CN- motif is provided by the [M(III)(CN)(6)](3-) moiety adopting a trans bridging mode between [Mn(III)(5-TMAMsalen)](3+) cations. The Mn(III) and M(III) ions occupy special crystallographic positions: a C(2) axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn-Teller axis of the Mn(III)(h.s.) ion is perpendicular to the N(2)O(2) plane formed by the 5-TMAMsalen tetradentate ligand. These Jahn-Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn-N(axis) -C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter-chain M???M distance being relatively large at 9?? due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5-TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn-Fe and Mn-Mn display intra-chain ferromagnetic interactions, whereas Mn-Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single-chain magnet (SCM) behavior of these three systems, whereas Mn-Co is merely paramagnetic with S(Mn)=2 and D/k(B)=-5.3?K (D being a zero-field splitting parameter). At low temperatures, the Mn-M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite-chain and finite-chain regimes for the SCM behavior. These isostructural hetero-spin SCMs offer a unique series of alternating [-Mn-NC-M-CN-] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

11.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

12.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

13.
Reactions between [M'(III)(CN)(6)](3-) anions (M' = Co, Cr, or Fe) and mononuclear complexes of M(II) ions (M = Cr, Mn, Co, Ni, or Zn) produce a family of pentanuclear clusters {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}. The core of the clusters is formed by five metal ions that are bridged through six CN- linkers into a trigonal bipyramid, with M and M' ions occupying equatorial and axial positions of the bipyramid, respectively. Three of the CN- ligands from each M' center remain terminal and point toward the outside of the cluster, along the trigonal axes. Studies of magnetic coupling in the {[M(tmphen)(2)](3)[M'(CN)(6)](2)]} family of clusters revealed a similarity between the observed magnetic exchange constants and the values estimated for the molecule-based magnets of the Prussian blue family. The type of the magnetic exchange varies across the series, changing from antiferromagnetic for M = Cr and Mn to ferromagnetic for M = Co and Ni. Complexes {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}, which contain diamagnetic Co(III) ions in the axial positions, serve as convenient model compounds for an accurate assessment of the magnetic parameters for the equatorial M ions in the absence of magnetic interactions. The {[Co(tmphen)(2)](3)[Cr(CN)(6)](2)]} cluster exhibits cyanide linkage isomerism, the relative amount of which depends on the synthetic conditions.  相似文献   

14.
Three isostructural cyanido-bridged heptanuclear complexes, [{Cu(II)(saldmen)(H?O)}?{M(III)(CN)?}]-(ClO?)?·8H?O (M= Fe(III) 2; Co(III), 3; Cr(III) 4), have been obtained by reacting the dinuclear copper(II) complex, [Cu?(saldmen)?(μ-H?O)(H?O)?](ClO?)?·2H?O 1, with K?[Co(CN)?], K?[Fe(CN)?], and K?[Cr(CN)?], respectively (Hsaldmen is the Schiff base resulting from the condensation of salicylaldehyde with N,N-dimethylethylenediamine). A unique octameric water cluster, with bicyclo[2,2,2]octane-like structure, is sandwiched between the heptanuclear cations in 2, 3 and 4. The cryomagnetic investigations of compounds 2 and 4 reveal ferromagnetic couplings of the central Fe(III) or Cr(III) ions with the Cu(II) ions (J(CuFe) = +0.87 cm?1, J(CuCr) = +30.4 cm?1). The intramolecular Cu···Cu exchange interaction in 3, across the diamagnetic cobalt(III) ion, is -0.3 cm?1. The solid-state 1H-NMR spectra of compounds 2 and 3 have been investigated.  相似文献   

15.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

16.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

17.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

18.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

19.
The reaction of the hexacyanometalates K3[M(1)(CN)6] (M(1) = Cr(III), Fe(III), Co(III)) with the bispidine complexes [M(2)(L(1))(X)](n+) and [M(2)(L(2))(X)](n+) (M(2) = Mn(II), Ni(II), Cu(II); L(1) = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; L(2) = 3-methyl-9-oxo-7-(2-pyridylmethyl)-2,4-di-(2-quinolyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; X = anion or solvent) in water-methanol mixtures affords trinuclear complexes with cis- or trans-arrangement of the bispidine-capped divalent metal centers around the hexacyanometalate. X-ray structural analyses of five members of this family of complexes (cis-Fe[CuL(2)]2, trans-Fe[CuL(1)]2, cis-Co[CuL(2)]2, trans-Cr[MnL(1)]2, trans-Fe[MnL(1)]2) and the magnetic data of the entire series are reported. The magnetic data of the cyanide bridged, ferromagnetically coupled cis- and trans-Fe[ML]2 compounds (M = Ni(II), Cu(II)) with S = 3/2 (Cu(II)) and S = 5/2 (Ni(II)) ground states are analyzed with an extended Heisenberg Hamiltonian which accounts for anisotropy and zero-field splitting, and the data of the Cu(II) systems, for which structures are available, are thoroughly analyzed in terms of an orbital-dependent Heisenberg Hamiltonian, in which both spin-orbit coupling and low-symmetry ligand fields are taken into account. It is shown that the absence of single-molecule magnetic behavior in all spin clusters reported here is due to a large angular distortion of the [Fe(CN)6](3-) center and the concomitant quenching of orbital angular momentum of the Fe(III) ((2)T2g) ground state.  相似文献   

20.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号