首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homoleptic carbonyl cations of the electron-rich metals in Groups 8 through 12 are the newest members of the large family of transition metal carbonyls. They can be distinguished from typical metal carbonyl complexes in several respects. Their synthesis entails carbonylation of metal salts in such superacids as fluorosulfuric acid and “magic acid” HSO3F? SbF5. Thermally stable salts with [Sb2F11]? as counterion are obtained with antimony pentafluoride as reaction medium. Both the [Sb2F11]? anion and superacid reaction media have previously found little application in the organometallic chemistry of d-block elements. Also unprecedented in metal carbonyl chemistry are the coordination geometries with coordination numbers 4 (square-planar coordination) and 2 (linear coordination) for the cation. Formal oxidation states of the metals, and the charges of the complex cations, extend from + 1 to +3: thus CO is largely σ-bonded to the metal, and the CO bond is strongly polarized. Minimal metal → CO π-backbonding and a positive partial charge on carbon are manifested in long M? C bonds, short C? O bonds, high frequencies for C? O stretching vibrations (up to 2300 cm?1), and small 13C NMR chemical shifts (up to δc, = 121). Prominent examples of these unusual homoleptic carbonyl cations, which were recently the subject of a Highlight in this journal, include the first carbonyl cation of a p-block metal [Hg(CO)2]2+, the first trivalent carbonyl cation [Ir(CO)6]3+, and the first multiply charged carbonyl cation of a 3d metal [Fe(CO)6]2+. In this overview we propose to (a) outline the historical origins of cationic metal carbonyls and their methods of synthesis; (b) present a summary of the general field of carbonyl cations, which has developed over a yery short period of time; (c) discuss the structural and spectroscopic characteritics of metal–CO bonding; (d) discuss the special significance associated with reaction media and the [Sb2F11]? anion; and (e) point to the most recent results and anticipated future developments.  相似文献   

2.
Antimony pentafluoride is a strong Lewis acid and fluoride-ion acceptor that has not previously demonstrated any discreet fluoride-ion donor properties. The first donor-stabilised [SbF4]+ cations were prepared from the autoionisation of SbF5 in the presence of bidentate N-donor ligands 2,2’-bipyridine (bipy) and 1,10-phenanthroline (phen) as their [SbF6] salts. The [SbF4(N−N)][Sb2F11] (N−N=bipy, phen) salts were synthesised by the addition of one equivalent of SbF5⋅SO2 to [SbF4(N−N)][SbF6] in liquid SO2. The salts show remarkable stability and were characterised by Raman spectroscopy and multinuclear NMR spectroscopy. The crystal structures of [SbF4(phen)][SbF6] ⋅ 3CH3CN and [SbF4(phen)][SbF6] ⋅ 2SO2 were determined, showing distorted octahedral cations. DFT calculations and NBO analyses reveal that significant degree of electron-pair donation from N to Sb stabilizes [SbF4]+ with the Sb−N bond strength being approximately two thirds of that of the Sb−F bonds in these cations and the cationic charge being primarily ligand-centred.  相似文献   

3.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

4.
Preparation and characterization of the dimeric Lewis superacid [Al(OTeF5)3]2 and various solvent adducts is presented. The latter range from thermally stable adducts to highly reactive, weakly bound species. DFT calculations on the ligand affinity of these Lewis acids were performed in order to rank their remaining Lewis acidity. An experimental proof of the Lewis acidity is provided by the reaction of solvent-adducts of Al(OTeF5)3 with [PPh4][SbF6] and OPEt3, respectively. Furthermore, their reactivity towards chloride and pentafluoroorthotellurate salts as well as (CH3)3SiCl and (CH3)3SiF is shown. This includes the formation of the dianion [Al(OTeF5)5]2−.  相似文献   

5.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

6.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

7.
Sulfurtrioxide reacts with the superacidic solutions XF/SbF5 (X=H, D) to form the corresponding salts [X2SO3F]+[SbF6]?, which are the protonated forms of fluorosulfuric acid. The salts have been characterized by vibrational spectroscopy and a single‐crystal structure analysis. [H2SO3F]+[SbF6]? crystallizes in the monoclinic space group P21/n (no. 14) with four formula units in the unit cell. The crystal structure possesses a distorted tetrahedral O3SF skeleton of the cations, which are linked with two strong hydrogen bridges to [SbF6]? anions and forms a one‐dimensional chain. The crystal structure and the vibrational spectra are compared to the quantum‐chemical‐calculated free [H2SO3F]+ cation. Additionally, an [H2SO3F(HF)2]+ unit was calculated at the RHF/6‐311++G(d,p) level to simulate H???F hydrogen bridges found in the solid state.  相似文献   

8.
Reactions designed to give Se6[Sb(OTeF5)6]2 by the reaction of Se2Br2, 4Se, and 2Ag[Sb(OTeF5)6] lead to products that include [Ag2(Se6)(SO2)2][Sb(OTeF5)6]2(1). The distorted cubic (Ag2Se6 2+) n consists of a Se6 molecule bicapped by two silver cations (local D3d sym.). Reactions of AgMX6 (M = As, Sb) with selenium in liquid SO2 yielded crystals of [Ag2Se6][AsF6]2 (2) and [AgSe6][Ag2(SbF6)3] (3). Both salts contain stacked arrays of [AgSe6]+ half-sandwich cationic units. [Ag2Se6][AsF6]2 in addition contains stronger, linear Se─Ag─Se horizontal linkages between the vertically stacked cationic columns. [AgSe6][Ag2(SbF6)3] features a remarkable three-dimensional [Ag2(SbF6)3]? anion held together by strong Sb─F···Ag contacts between component Ag+ and SbF6 ? ions. Hexagonal channels through this honeycomb-like anion are filled by the stacked [AgSe6 +]x.  相似文献   

9.
The reaction of Ir4(CO)12 with potassium hydroxide in methanol and/or with sodium in tetrahydrofuran leads to the carbonyliridate anions [HIr4(CO)11]?, [Ir6(CO)22]2?, [Ir8(CO)20]2?, [Ir6(CO)15]2? and [Ir(CO)4]? obtained as salts with bulky cations. From these, the tetranuclear carbonyl hydride H2Ir4(CO)11 and the hexanuclear carbonyl compound Ir6(CO)16 are also obtained.  相似文献   

10.
Tin(II) fluoride reacts with Lewis acids, AsF5 and SbF5, in a 2:1 ratio, to give salts of the [Sn2F3+] cation. Reaction of SnF·MF6 with SnF2 in liquid SO2 also produces the [Sn2F3] [MF6] salt. Tin-119 Mössbauer data are presented and compared with those for SnF2, SnF·MF6 and Sn(SbF6)2.  相似文献   

11.
Reduction of several metal carbonyl dimers including Mn2](CO)10, [C5H5Fe(C0)2]2, Co2(CO)8, and [C5H5M(CO)3]2 (M = Cr, Mo and W) by sodium—potassium alloy (NaK) in tetrahydrofuran at room temperature provides a rapid and clean method for the production of the corresponding metal carbonyl anions in high yield. Isolation and characterization of [n-Bu4N] [Fe(CO)2C5H5] from the iron dimer reduction is described. Reductions of other carbonyls including M(CO)6 (M = Cr, Mo and W) and Re2(CO)10 proceed more slowly than previously established methods and provide principally M2(CO)102? and Re(CO)55?. Methods for the preparation of Re(CO)5? are critically considered. The reaction of NaK with [C5H5NiCO]2 is discussed in relation to previously reported results. Infrared solution spectra of a number of carbonyl anions in THF, obtained in a special infrared solution cell, are reported.  相似文献   

12.
Fumaric acid was reacted with the binary superacidic systems HF/SbF5 and HF/AsF5. The O,O'-diprotonated [C4H6O4]2+([MF6])2 (M = As, Sb) and the O-monoprotonated [C4H5O4]+[MF6] (M = As, Sb) species are formed depending on the stoichiometric ratio of the Lewis acid to fumaric acid. The colorless salts were characterized by low-temperature vibrational spectroscopy. In case of the hexafluoridoantimonates single-crystal X-ray structure analyses were carried out. The [C4H6O4]2+([SbF6])2 crystallizes in the monoclinic space group C2/c with four formula units per unit cell and [C4H5O4]+[SbF6] crystallizes in the triclinic space group P1 with one formula unit per unit cell. The protonation of fumaric acid does not cause a notable change of the C=C bond length. The experimental data are discussed together with quantum chemical calculations of the cations [C4H6O4 · 4 HF]2+ and [C4H6O4 · 2 H2CO · 2 HF]2+.  相似文献   

13.
Octacyanometalates K4[Mo(CN)8] and K4[W(CN)8] are completely protonated in superacidic mixtures of anhydrous hydrogen fluoride and antimony pentafluoride. The resulting hydrogen isocyanide complexes [Mo(CNH)8]4+ [SbF6]?4 and [W(CNH)8]4+ [SbF6]?4 are the first examples of eight‐coordinate homoleptic metal complexes containing hydrogen isocyanide (CNH) ligands. The complexes were crystallographically characterized, revealing hydrogen‐bonded networks with short N???H???F contacts. Low‐temperature NMR measurements in HF confirmed rapid proton exchange even at ?40 °C. Upon protonation, ν(C≡N) increases of about 50 cm?1 which is in agreement with DFT calculations.  相似文献   

14.
Preparation of μ-Sulfurdisulfonium Salts [(CH3)2S? Sx? S(CH3)2]2+2A? (x = 1–3, A? = AsF6?, SbF6?, SbCl6?). On the Analogy of the Reactivity of Sulfanes and Sulfonium Salts The preparation of the μ-sulfurdisulfonium salts [(CH3)2S? Sx? S(CH3)2]2+(A?)2 with x = 1–3 and A? = AsF6?, SbF6?, SbCl6? is reported. The salts are formed by reaction of (CH3)2SH+A? and (CH3)2SSH+A? with SCl2 and S2Cl2, resp. They are characterized by vibrational spectroscopic measurements. [(CH3)2S? S2? S(CH3)2]2+(SbF6?)2 crystallizes in the space group C2/c with a = 1 884.5(7) pm, b = 1 302.8(5) pm, c = 1 477.2(5) pm, β = 98.62(3)° und Z = 8.  相似文献   

15.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

16.
The magnetic properties of molecular metal cluster compounds resemble those of small metal particles in the metametallic size regime. Even-electron metal carbonyl clusters with 10 or more metal atoms are paramagnetic, because their frontier orbital separations of less than 1 eV lead to high-spin electronic configurations. The rhodium cluster [Rh17S2(CO)32]3? gives EPR below 200 K withg=2.04, the first example of this type of paramagnetism in an even-electron carbonyl cluster of this 4d metal. Its spectral parameters are compared with those of osmium carbonyl clusters and some significant differences highlighted. Attempts have also been made to generate radical cations from lower-nuclearity, diamagnetic molecular clusters such as Rh6(CO)16 by chemical oxidation in sulphuric acid. An EPR active species (g=2.09) believed to be [Rh6(CO)16]+ has been obtained.  相似文献   

17.
Vibrational and 17O NMR spectroscopy in combination with quantum chemical calculations are used to investigate the hydrolysis of antimony(III) fluoride complexes. A hydrolytic decomposition of SbF3 and [SbF4]? is accompanied by oligomerization with the formation of edge-and corner-connected dimers ([Sb2O2F4]2?, [Sb2OF8]4?) and trimers ([Sb3O3F6]3?, [Sb3OF9]2?) with bridging oxygen atoms. The hydrolysis of [SbF4]? is also characterized by the presence in the solution of a discrete cation of [SbF5]2? which is least hydrolized. Only a partial isomorphic substitution of fluoride ion by hydroxide one is possible, which is reflected in the composition of K2Sb(OH)xF5?x (x = 0.3) crystals isolated from the fluoride aqueous solution.  相似文献   

18.
Reaction of TlR2X, TlX3 and [TlX4? with RLi ( R = C6F5 or C6Cl5) leads to derivatives containing anions of the types [TlR4]?, [TlR2R′2]? or [TlR6]3?. Reactions of TlCl3 with [TlR4]? lead to [(μ-Cl)(TlR2Cl)2]? (R = C6F5) or [TlRCl3]? (R = C6Cl5) while addition of X? (X = Br? or SCN?) to Tl(C6Cl5)3 gives [Tl- (C6Cl5)3X]?. All the novel anions were isolated as salts of bulky cations (Me4N, Bu4N, PPN or Ph3BzP).  相似文献   

19.
Salts containing new cyanido(fluorido)phosphate anions of the general formula [PF6?n(CN)n]? (n=1–4) were synthesized by a very mild Lewis‐acid‐catalyzed synthetic protocol and fully characterized. All [PF6?n(CN)n]? (n=1–4) salts could be isolated on a preparative scale. It was also possible to detect the [PF(CN)5]? but not the [P(CN)6]? anion. The best results with respect to purity, yield, and low cost were obtained when the F?/CN? substitution reactions were carried out in ionic liquids.  相似文献   

20.
Transition‐metal hexafluorides do not exhibit fluoride‐ion donor properties in the absence of donor ligands. We report the first synthesis of donor‐stabilized [MF5]+ derived from a transition‐metal hexafluoride via fluoride‐ion abstraction using WF6(L) (L=2,2′‐bipy, 1,10‐phen) and SbF5(OSO) in SO2. The [WF5(L)][Sb2F11] salts and [WF5(1,10‐phen)][SbF6]?SO2 have been characterized by X‐ray crystallography, Raman spectroscopy, and multinuclear NMR spectroscopy. The reaction of WF6(2,2′‐bipy) with an equimolar amount of SbF5(OSO) reveals an equilibrium between [WF5(2,2′‐bipy)]+ and the [WF4(2,2′‐bipy)2]2+ dication, as determined by 19F NMR spectroscopy. The geometries of the cations in the solid state are reproduced by gas‐phase geometry optimizations (DFT‐B3LYP), and NBO analyses reveal that the positive charges of the cations are stabilized primarily by compensatory σ‐electron donation from the N‐donor ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号