首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Cp*Rh(eta1-NO3)(eta2-NO3)] (1) reacted with pyrazine (pyz) to give a dinuclear complex [Cp*Rh(eta1-NO3)(mu-pyz)(0.5)]2.CH2Cl2(3.CH2Cl2). Tetranuclear rectangles of the type [Cp*Rh(eta1,mu-X)(mu-L)(0.5)]4(OTf)4(4a: X = N3, L = bpy; 4b: X = N3, L = bpe; 4c: X = NCO, L = bpy) were prepared from [Cp*Rh(H2O)3](OTf)2 (2), a pseudo-halide (Me3SiN3 or Me3SiNCO), and a linear dipyridyl [4,4'-bipyridine (bpy) or trans-1,2-bis(4-pyridyl)ethylene (bpe)] by self-assembly through one-pot synthesis at room temperature. Treating complex with NH4SCN and dipyridyl led to the formation of dinuclear rods, [Cp*Rh(eta1-SCN)3]2(LH2) (5a: L = bpy; 5b: L = bpe), in which two Cp*Rh(eta1-SCN)3 units are connected by the diprotonated dipyridyl (LH2(2+)) through N(+)-H...N hydrogen bonds. Reactions of complex 2 with 1-(trimethylsilyl)imidazole (TMSIm) and dipyridyl (bpy or bpe) also produced another family of dinuclear rods [Cp*Rh(ImH)3]2.L (6a: L = bpy; 6b: L = bpe). Treating 1 and 2 with TMSIm and NH4SCN (in the absence of dipyridyl) generated a 1-D chain [Cp*Rh(ImH)3](NO3)2 (7) and a 1-D helix [Cp*Rh(eta1-SCN)2(eta1-SHCN)].H2O (8.H2O), respectively. The structures of complexes 3.CH2Cl2, 4a.H2O, 4c.2H2O, 5b, 6a, 7 and 8.H2O were determined by X-ray diffraction.  相似文献   

2.
The substitution of Mo(III) for Cr(III) in metal-cyanide clusters is demonstrated as an effective means of increasing the strength of the magnetic exchange coupling and introducing magnetic anisotropy. Synthesis of the octahedral complex [(Me(3)tacn)Mo(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) is accomplished with the addition of precisely 3 equiv of LiCN to a solution of [(Me(3)tacn)Mo(CF(3)SO(3))(3)] in DMF. An excess of LiCN prompts formation of a seven-coordinate complex, [(Me(3)tacn)Mo(CN)(4)](1)(-), whereas less LiCN produces multinuclear species such as [(Me(3)tacn)(2)Mo(2)(CN)(5)](1+). In close parallel to reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], assembly reactions between [(Me(3)tacn)Mo(CN)(3)] and [Ni(H(2)O)(6)](2+) or [(cyclam)Ni(H(2)O)(2)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) afford face-centered cubic [(Me(3)tacn)(8)Mo(8)Ni(6)(CN)(24)](12+) and linear [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) clusters, respectively. Generation of the former involves a thermally induced cyanide linkage isomerization, which rapidly leads to a low-spin form of the cluster containing diamagnetic Ni(II) centers. The cyclic voltammagram of this species in DMF reveals a sequence of six successive reduction waves spaced approximately 130 mV apart, suggesting class II mixed-valence behavior upon reduction. The magnetic properties of the aforementioned linear cluster are consistent with the expected ferromagnetic coupling and an S = 4 ground state, but otherwise vary slightly with the specific conformation adopted (as influenced by the packing of associated counteranions and solvate molecules in the crystal). Magnetization data indicate an axial zero-field splitting parameter with a magnitude falling in the range [D] = 0.44-0.72 cm(-1), and fits to the magnetic susceptibility data yield exchange coupling constants in the range J = 17.0-17.6 cm(-1). These values represent significant increases over those displayed by the analogous Cr(III)-containing cluster. When perchlorate is used as a counteranion, [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) crystallizes from water in a dimeric form with pairs of the linear clusters directly linked via hydrogen bonding. In this case, fitting the magnetic susceptibility data requires use of two coupling constants: one intramolecular with J = 14.9 cm(-1) and another intermolecular with J' = -1.9 cm(-1). Reacting [(Me(3)tacn)Mo(CN)(3)] with a large excess of [(cyclam)Ni(H(2)O)(2)](2+) produces a [(Me(3)tacn)(2)(cyclam)(3)(H(2)O)(2)Ni(3)Mo(2)(CN)(6)](6+) cluster possessing a zigzag structure that is a simple extension of the linear cluster geometry. Its magnetic behavior is consistent with weaker ferromagnetic coupling and an S = 6 ground state. Similar reactions employing an equimolar ratio of reactants afford related one-dimensional chains of formula [(Me(3)tacn)(cyclam)NiMo(CN)(3)](2+). Once again, the ensuing structure depends on the associated counteranions, and the magnetic behavior indicates ferromagnetic coupling. It is hoped that substitutions of the type exemplified here will be of utility in the design of new single-molecule magnets.  相似文献   

3.

The supramolecular interplay of the Ph 3 Sn+ unit and the [Cu(CN) 4 ]3? ion with either 4,4′-bipyridine (bpy), trans-1,2-bis(4-pyridyl)ethene (tbpe), 1,2-bis(4-pyridyl)ethane (bpe), pyrazine (pyz), or methylpyrazine (mepyz) as bidentate ligands in presence of H 2 O has been investigated for the first time. The products obtained have the general formula [(Ph 3 Sn) 3 Cu(CN)4·L·XH2O], where L is a bidentate ligand and X = 0–2. H 2 O molecules are usually coordinated to tin atoms and are involved in two significant O─H─N hydrogen bonds, wherein the nitrogen atoms belong either to the bidentate ligand or the M-coordinated cyanide ligands. The structures of these supramolecular coordination polymers were investigated by elemental analysis, X-ray powder diffraction, and IR, mass, and NMR spectra.  相似文献   

4.
A new 1D compound [(H2bpe)Mo4O13](1) (bpe=trans-1,2-Di-(4-pyridyl)-ethylen) was hydrothermally synthesized and characterized. Compound 1 comprises 3D supramolecular network constructed from 1D [Mo4O13]2- anion chains and protonated bpe layers via hydrogen bonds and π-π stacking interactions. The crystal data are the following: C12H12Mo4N2O13, Monoclinic, space group P21/n, a=0.968 64(13) nm, b=1.349 68(18) nm, c=1.514 9(2) nm, β=99.766(2)°, Z=4. The inorganic chain built up from only molybdenum oxide building blocks is interesting. The luminescent property of 1 was studied. CCDC: 739954.  相似文献   

5.
Cocrystallizations of diboronic acids [1,3-benzenediboronic acid (1,3-bdba), 1,4-benzenediboronic acid (1,4-bdba) and 4,4’-biphenyldiboronic acid (4,4’-bphdba)] and bipyridines [1,2-bis(4-pyridyl)ethylene (bpe) and 1,2-bis(4-pyridyl)ethane (bpeta)] generated the hydrogen-bonded 1 : 2 cocrystals [(1,4-bdba)(bpe)2] (1), [(1,4-bdba)(bpeta)2] (2), [(1,3-bdba)(bpe)2(H2O)2] (3) and [(1,3-bdba)(bpeta)2(H2O)] (4), wherein 1,3-bdba involved hydrated assemblies. The linear extended 4,4’-bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'-bphdba)(bpe)] (5) and [(4,4'-bphdba-me)(bpeta)] (6). For 6, a hemiester was generated by an in-situ linker transformation. Single-crystal X-ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen-bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D-to-2D single-crystal-to-single-crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.  相似文献   

6.
Xu QF  Chen JX  Zhang WH  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(10):4055-4064
Approaches to the assembly of (eta5-C5Me5)WS3Cu3-based supramolecular compounds from two preformed incomplete cubane-like clusters [PPh4][(eta5-C5Me5)WS3(CuX)3] (X = CN, 1a; X = Br, 1b) have been investigated. Treatment of 1a with LiBr/1,4-pyrazine (1,4-pyz), pyridine (py), LiCl/py, or 4,4'-bipyridine (4,4'-bipy) and treatment of 1b with 4,4'-bipy gave rise to a new set of W/Cu/S cluster-based compounds, [Li[((eta5-C5Me5)WS3Cu3(mu3-Br))2(mu-CN)3].C6H6]infinity (2), [(eta5-C5Me5)WS3Cu3(mu-CN)2(py)]infinity (3), [[PPh4][(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)].py]infinity (4), [PPh4]2[(eta5-C5Me5)WS3Cu3(CN)2]2(mu-CN)2.(4,4'-bipy) (5), and [[(eta5-C5Me5)WS3Cu3Br(mu-Br)(4,4'-bipy)].Et2O]infinity (6). The structures of 2-6 have been characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Compound 2 displays a 1D ladder-shaped chain structure built of square-like [[(eta5-C5Me5)WS3Cu3(mu3-Br)(mu-CN)]4](mu-CN)2(2-) anions via two pairs of Cu-mu-CN-Cu bridges. Compound 3 consists of a single 3D diamond-like network in which each (eta5-C5Me5)WS3Cu3 unit, serving as a tetrahedral node, interconnects with four other nearby units through Cu-mu-CN-Cu bridges. Compound 4 contains a 1D zigzag chain array made of cubane-like [(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)]- anions linked by a couple of Cu-mu-CN-Cu bridges. Compound 5 contains a dimeric structure in which the two incomplete cubane-like [(eta5-C5Me5)WS3(CuCN)2(mu-CN)]- anions are strongly held together via a pair of Cu-mu-CN-Cu bridges. Compound 6 contains a 2D brick-wall layer structure in which dimers of [(eta5-C5Me5)WS3Cu3Br(4,4'-bipy)]2 are interconnected via four Cu-mu-Br-Cu bridges. The successful construction of (eta5-C5Me5)WS3Cu3-based supramolecular compounds 2-6 from the geometry-fixed clusters 1a and 1b may expand the scope of the rational design and construction of cluster-based supramolecular assemblies.  相似文献   

7.
Zhang WH  Song YL  Ren ZG  Li HX  Li LL  Zhang Y  Lang JP 《Inorganic chemistry》2007,46(16):6647-6660
The assembly of a new family of [(eta5-C5Me5)MoS3Cu3]-supported supramolecular compounds from a preformed cluster [PPh4][(eta5-C5Me5)MoS3(CuNCS)3].DMF (1.DMF) with four multitopic ligands with different symmetries is described. Reactions of 1 with 1,2-bis(4-pyridyl)ethane (bpe) (Cs symmetry) or 1,4-pyrazine (1,4-pyz) (D2h symmetry) in aniline gave rise to two polymeric clusters {[{(eta5-C5Me5)MoS3Cu3}2(NCS)3(mu-NCS)(bpe)3].3aniline}n (2) and [(eta5-C5Me5)MoS3Cu3(1,4-pyz)(mu-NCS)2]n (3). On the other hand, solid-state reactions of 1 with 2,4,6-tri(4-pyridyl)-1,3,5-triazine (tpt) (D3h symmetry) or 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (H2tpyp) (D4h symmetry if 21H and 23H of the H2tpyp are omitted) at 100 degrees C for 12 h followed by extraction with aniline yielded another two polymeric clusters {[(eta5-C5Me5)MoS3Cu3(tpt)(aniline)(NCS)2].0.75aniline. 0.5H2O}n (4) and {[(eta5-C5Me5)MoS3Cu3(NCS)(mu-NCS)(H2tpyp)0.4(Cu-tpyp)0.1].2aniline.2.5benzene}n (5). These compounds were characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and X-ray analysis. Compound 2 consists of a 2D (6,3) network in which [(eta5-C5Me5)MoS3Cu3] cores serve both a T-shaped three-connecting node and an angular two-connecting node to interconnect other equivalent units through single bpe bridges, double bpe bridges, and mu-NCS bridges. Compound 3 has a 3D diamondlike framework in which each [(eta5-C5Me5)MoS3Cu3] core, acting as a tetrahedral connecting node, links four other neighboring units by 1,4-pyz bridges and mu-NCS bridges. Compound 4 contains a honeycomb 2D (6,3)core(6,3)tpt network in which each cluster core, serving a trigonal-planar three-connecting node, links three pairs of equivalent cluster cores via three tpt lignads. Compound 5 has a rare scalelike 2D (4,62)core(42,62)ligand network in which each cluster core acts as a T-shaped three-connecting node to link with other equivalent ones through mu-NCS bridges and H2tpyp (or Cu-tpyp) ligands. The results showed that the formation of the four different multidimensional topological structures was evidently affected by the symmetry of the ligands used. In addition, the third-order nonlinear optical properties of 1-5 in aniline were also investigated by using Z-scan techniques at 532 nm.  相似文献   

8.
Reaction of copper(II) tetrazolate-5-carboxylate with different neutral N-donor spacer ligands under hydrothermal conditions leads to the formation of five new coordination polymers, [Cu(tzc)(pyz)(0.5)(H(2)O)(2)](n)·H(2)O (1), [Cu(tzc)(pyz)](n) (2), [Cu(tzc)(pym)(H(2)O)](n) (3), [Cu(tzc)(dpe)(0.5)(H(2)O)](n) (4) and [Cu(tzc)(azpy)(0.5)(H(2)O)](n) (5) (tzc = tetrazolate-5-carboxylate, pyz = pyrazine, pym = pyrimidine, dpe = 1,2-di(4-pyridyl)ethylene and azpy = 4,4'-azopyridine). All five structures were characterized by X-ray single-crystal measurements and bulk material can be prepared phase pure in high yields. The crystal structures of the hydrates 1, 3, 4 and 5 show dimeric [Cu(2)(N(tzc)-N(tzc))(2)] building units formed by μ(2)-N1,O1:N2 bridging tzc ligands as the characteristic structural motif. These six-membered entities in 1, 4 and 5 are connected by μ(2)-N,N' bridging N-donor ligands into 1D chains and in 3 into 2D layers. In the crystal structure of compound 2 adjacent Cu(II) cations are connected by μ(2)-N1,O1:N4,O2 bridging tzc ligands into chains, which are further connected by μ(2)-N,N' bridging pyz ligands forming 2D layers. Extensive hydrogen bonds in all compounds play an important role in the construction of their supramolecular networks. Investigations of their thermal properties reveal water release upon heating according to the formation of anhydrates before starting decomposing above 220 °C. Furthermore, the magnetic properties have been studied leading to consistent global antiferromagnetic exchange interactions with coupling constants of J = 3 ± 1 cm(-1) and long-range antiferromagnetic ordering states at lower temperatures.  相似文献   

9.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

10.
Dias HV  Jin W 《Inorganic chemistry》1996,35(22):6546-6551
The N-methyl-2-(methylamino)troponimine [(Me)(2)ATI]H reacts with bis[bis(trimethylsilyl)amido]tin(II) to yield [(Me)(2)ATI](2)Sn in excellent yield. The treatment of [(Me)(2)ATI](2)Sn with GaI and InCl led to the bis(ligand)gallium(III) and -indium(III) compounds [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl. These metal complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. All three metal adducts show fluxional behavior in solution at room temperature. [(Me)(2)ATI](2)Sn exhibits a pseudo trigonal bipyramidal structure in the solid state. The gallium and indium atoms in [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl adopt trigonal bipyramidal geometry around the metal center with the halide occupying an equatorial site. A convenient, high-yield route to [(Me)(2)ATI]H is also reported. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 183 K: [(Me)(2)ATI](2)Sn, C(18)H(22)N(4)Sn, a = 8.4347(11) ?, b = 10.5564(13) ?, c = 11.5527(11) ?, alpha = 66.931(8) degrees, beta = 73.579(9) degrees, gamma = 67.437(7) degrees, V = 863.3(2) ?(3), triclinic, space group P&onemacr;, Z = 2, R = 0.0224; [(Me)(2)ATI](2)GaI, C(18)H(22)GaIN(4), a = 12.947(2) ?, b = 9.5834(9) ?, c = 16.0132(12) ?, beta = 107.418(8) degrees, V = 1895.8(3) ?(3), monoclinic, space group P2(1)/c, Z = 4, R = 0.0214; [(Me)(2)ATI](2)InCl, C(18)H(22)ClInN(4), a = 24.337(3) ?, b = 8.004(2) ?, c = 19.339(3) ?, beta = 101.537(13) degrees, V = 3691.1(11) ?(3), monoclinic, space group C2/c, Z = 8, R = 0.0224.  相似文献   

11.
The occurrence of a heteroatom X (C, N, or O) in the MoFe7S9X core of the iron-molybdenum cofactor of nitrogenase has encouraged synthetic attempts to prepare high-nuclearity M-Fe-S-X clusters containing such atoms. We have previously shown that reaction of the edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] (1) with nucleophiles HQ- affords the clusters [(Tp)2Mo2Fe6S8Q(QH)2](3-) (Q = S, Se) in which HQ- is a terminal ligand and Q(2-) is a mu2-bridging atom in the core. Reactions with OH- used as such or oxygen nucleophiles generated in acetonitrile from (Bu3Sn)2O or Me3SnOH and fluoride were examined. Reaction of 1 with Et4NOH in acetonitrile/water generates [(Tp)2Mo2Fe6S9(OH)2]3- (3), isolated as [(Tp)2Mo2Fe6S9(OH)(OC(=NH)Me)(H2O)](3-) and shown to have the [Mo2Fe6(mu2-S)2(mu3-S)6(mu6-S)] core topology very similar to the P(N) cluster of nitrogenase. The reaction system 1/Et4NOH in acetonitrile/methanol yields the P(N)-type cluster [(Tp)2Mo2Fe6S9(OMe)2(H2O)](3-) (5). The system 1/Me3SnOH/F- affords the oxo-bridged double P(N)-type cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}5- (7), convertible to the oxidized cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}4- (6), which is prepared independently from [(Tp)2Mo2Fe6S9F2(H2O)](3-)/(Bu3Sn)2O. In the preparations of 3-5 and 7, hydroxide liberates sulfide from 1 leading to the formation of P(N)-type clusters. Unlike reactions with HQ-, no oxygen atoms are integrated into the core structures of the products. However, the half-dimer composition [Mo2Fe6S9O] relates to the MoFe7S9 constitution of the putative native cluster with X = O. (Tp = hydrotris(pyrazolyl) borate(1-)).  相似文献   

12.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

13.
Reaction of Ag(tcm), tcm = tricyanomethanide, C(CN)(3)(-), with a range of terminal and bridging ligands results in formation of a series of new coordination polymers. Recrystallization of Ag(tcm) from acetonitrile generates Ag(tcm)(MeCN), which is composed of corrugated (6,3) sheets displaying two-fold 2D --> 2D parallel interpenetration and is topologically identical to the parent Ag(tcm) structure. Ag(tcm)(L) species, L = 1,4-diazobicyclo-[2.2.2]-octane (dabco) or 4,4'-bipyridine (bipy), contain two interpenetrating 3D networks composed of 3-connecting (tcm) and 5-connecting (Ag) centers. The structure of Ag(tcm)(bpe), bpe = 1,2-bis(4-pyridyl)ethene, contains 1D ladderlike polymers connected by weak Ag-tcm interactions into two interpenetrating 3D nets. Ag(tcm)(Mepyz)(3/2), Mepyz = methylpyrazine, also contains 1D ladders, while Ag(tcm)(Me(4)pyz)(1/2), Me(4)pyz = tetramethylpyrazine, contains 2D sheets composed of Ag(tcm) 1D "tubes" linked by bridging Me(4)pyz ligands. Ag(tcm)(hmt), hmt = hexamethylenetetramine, has a 3D network structure in which the hmt ligands are 3-connecting, the tcm anions are 2-connecting, and the silver atoms are 5-connecting. The topology is the same as displayed by Ag(tcm)(L), L = dabco or bipy.  相似文献   

14.
Meyer TJ  Huynh MH 《Inorganic chemistry》2003,42(25):8140-8160
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.  相似文献   

15.
Li Y  Hao N  Wang E  Yuan M  Hu C  Hu N  Jia H 《Inorganic chemistry》2003,42(8):2729-2735
Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H(2)O)(1.5)](2)Mo(6)O(19).CH(3)CN, 1, and [(Na(DB18C6)(H(2)O)(2))(3)(H(2)O)(2)]XMo(12)O(40).6DMF.CH(3)CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) A, c = 14.2676(4) A, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15.7435(17) A, c = 30.042(7) A, gamma = 120 degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) A, c = 29.9778(18) A, gamma = 120 degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo(6)O(19)](2)(-) polyoxoanions and the CH(2) groups of crown ether molecules. Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [(Na(DB18C6)(H(2)O)(2))(3)(H(2)O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo(12)O(40)](3)(-) (X = As and P) polyoxoanion "guests" resided.  相似文献   

16.
Sun C  Li Y  Wang E  Xiao D  An H  Xu L 《Inorganic chemistry》2007,46(5):1563-1574
By synthesizing the novel molybdenum arsenate complexes, we have obtained eight new structures, namely, (4,4'-bipy)[Zn(4,4'-bipy)2(H2O)2]2[(ZnO6)(AsIII3O3)2Mo6O18].7H2O, 1, [Zn(phen)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 2, [Zn(2,2'-bipy)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 3, [Zn(H4,4'-bipy)2(H2O)4][(ZnO6)(AsIII3O3)2Mo6O18].8H2O, 4, (H24,4'-bipy)[CuI(4,4'-bipy)]2[H2AsV2Mo6O26].H2O, 5, (H24,4'-bipy)3[AsV2Mo6O26].4H2O, 6, (H24,4'-bipy)3[AsV2Mo6O26(H2O)].4H2O, 7, and (H24,4'-bipy)2.5(H3O)[AsV2Mo6O26(H2O)].1.25H2O, 8 (4,4'-bipy = 4,4'-bipyridine, 2,2'-bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline). These structures were determined by single-crystal X-ray diffraction analysis and were further characterized by elemental analysis, IR, XPS spectroscopy, and TG analysis. The structure of 1 is constructed from two-dimensional square gridlike sheets linked by the polyanions [(ZnO6)(AsIII3O3)2Mo6O18]4- via hydrogen-bonding interactions to form a three-dimensional supramolecular framework with two types of channels. Compounds 2 and 3 display similar bisupported structures. Compound 4 features a three-dimensional supramolecular architecture. Compound 5 possesses a 1D infinite ladderlike ribbon. Compounds 6-8 are discrete structures exhibiting three isomeric forms of [HxAs2Mo6O26](6-x)-. Furthermore, compound 8 represents a new isomer B'-[As2Mo6O26(H2O)]6-. In addition, the fluorescent properties of compounds 1-3 are reported.  相似文献   

17.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

18.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

19.
The hydrothermal reaction of CuSO(4).5H2O, Na2MoO(4).2H2O and 2,2'-bipyridine with the bridging diphosphonate ligand H2O3P(CH2)4PO3H2 yields the one-dimensional chain [(Cu(bpy)2)(Cu(bpy)(H2O)2)(Mo5O15)(O3P(CH2)4PO3)].H2O; the introduction of a second bridging component in the reaction of Cu(MeCO2)2.H2O, MoO3, H2O3PCH2CH2PO3H2 and tetra(2-pyridyl)pyrazine yields the network solid [(Cu2(tpypyz)(H2O)2)(Mo5O15)(O3PCH2CH2PO3)].5.5H2O.  相似文献   

20.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号