首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exenatide (synthetic exendin-4), a 39-amino acid peptide, was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) microspheres as a sustained release delivery system for the therapy of type 2 diabetes mellitus. The microspheres were prepared by a double-emulsion solvent evaporation method and the particle size, surface morphology, drug encapsulation efficiency, in vitro release profiles and in vivo hypoglycemic activity were evaluated. The results indicated that the morphology of the exenatide PLGA microspheres presented as a spherical shape with smooth surface, and the particle sizes distributed from 5.8 to 13.6 μm. The drug encapsulation efficiency tested by micro-bicinchoninic acid (BCA) assay was influenced by certain parameters such as inner and outer aqueous phase volume, PLGA concentration in oil phase, polyvinyl alcohol (PVA) concentrations in outer aqueous phase. Moreover, in vitro release behaviors were also affected by some parameters such as polymer type, PLGA molecular, internal aqueous phase volume, PLGA concentration. The pharmacodynamics in streptozotocin (STZ)-induced diabetic mice suggested that, exenatide microspheres have a significant hypoglycemic activity within one month, and its controlling of plasma glucose was similar to that of exenatide solution injected twice daily with identical exenatide amount. In conclusion, this microsphere could be a well sustained delivery system for exenatide to treat type 2 diabetes mellitus.  相似文献   

2.
A polyelectrolyte complex between a therapeutic peptide and chargeable polymer was applied to prevent peptide denaturation in poly(lactide-co-glycolide) (PLGA) microspheres. Chondroitin sulfate A (CsA) was employed as a polymeric additive for the formation of an ionic complex with insulin (InS). The complex prepared at pH 3.0 evidenced a nano-size in the range of 100–400 nm with a mono distribution. The stability of InS in the complex in an organic/water (O/W) interface was verified via RP-HPLC. The insulin in the complex evidenced a retention time almost identical to native InS, whereas free insulin did not evidence such a retention time. On the basis of these studies, PLGA microspheres including a complex with various CsA/InS ratios were prepared via a double-emulsion method (PLGA/CsA MS). InS loading efficiency in the system is higher than that of the microspheres without CsA. The system evidenced a lower initial burst and, following the initial burst, continuous release kinetics for 30 days. Circular dichroism (CD) spectra demonstrated that the insulin in PLGA/CsA MS is more stable than the PLGA-only microspheres (PLGA/only MS) for 20 days. These results indicate that the complex system with CsA is useful for the long-term delivery of peptides with lower pI values.  相似文献   

3.
Alcoholysis of W2(NMe2)6 with excess n-propanol in hexane yields the tetranuclear cluster, W4(OPrn, I. Reduction of I with two equivalents of Li2COT in THF gives a small yield of Li2W2(OPrn)8. Single crystals were isolated by cooling the product mixture in DME and were shown to be [Li2W2(OPrn)8(DME)]2, II, which consists of a unique “dimer of dimers” structure. In this reaction sequence, W416+ cluster formation is followed by four electron reduction to reform the (W≡W)6+ unit. Better yields of the lithium salt can be obtained by the addition of LiOPrn/HOPrn solutions to W2(OBut)6 in which case Li2W2(OPrn)8 has been obtained as a 1:1 adduct with LiOPr. This identity of this salt was confirmed by solution NMR spectroscopy. In the alternative reaction, the (W≡W)6+ center remains intact from reactant to product. No attempt has been made to separate the product from excess LiOPr. DFT (ADF 2004.01) molecular orbital calculations on the model cluster W4(OH)16 are used to help elucidate the disruption of the W4 cluster upon four electron reduction. The molecular structures of compounds I and II are reported.*Dedicated to Professor F. A Cotton on the occasion of his 75th birthday.  相似文献   

4.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

5.
The nitrosation of Na[W(CO)5CN] using amyl nitrite and sulphuric acid in a two phase water— diethyl ether system gives the trinuclear compound W3(μCN)3(NO)3(CO)9. A single crystal X-ray diffraction study showed that the compound contains a nine-membered ring of three tungsten atoms and three bridging cyanide groups. The terminal carbonyl and nitrosyl ligands were not distinguishable.  相似文献   

6.
罗云清  邱美  杨伟  朱佳  李奕  黄昕  章永凡 《物理化学学报》2015,30(12):2224-2232
采用基于第一性原理的分子动力学和量子力学相结合的方法, 对W3O9团簇在经Li 和Al 原子掺杂的MgO(001)表面的负载构型、稳定性以及体系的电子结构进行了系统研究. 结果表明, 当掺杂发生在表层时, 杂质原子的类型对W3O9团簇的负载构型有显著影响. 对于缺电子的Li 掺杂, 负载后W3O9团簇环状构型并不稳定, 转化为链状结构; 而Al 原子的掺杂则使得MgO(001)表面电子富余, 此时W3O9团簇存在平躺和垂直两种吸附方式, 二者能量稳定性相近, 其中前者存在同时与三个W原子成键的帽氧结构. 当掺杂发生在次表层时, 两种掺杂体系W3O9的负载构型相似, 团簇仍保持环状结构并倾向于采用垂直方式沉积在表面上. 与Li 掺杂体系相比, 富电子的Al 掺杂可显著增强W3O9与MgO(001)表面之间的结合能力, 负载后有较多电子从表面转移到团簇中特定的W原子上, 这将对W3O9团簇的催化性能产生显著影响.  相似文献   

7.
Several different kinds of planar defects have been observed by means of high-resolution electron microscopy in W4Nb26O77, such as disordered intergrowth of WNb12O33 and W3Nb14O44 structural slabs, locally ordered intergrowth with a sequence of AABAAB, two separate microdomains of WNb12O33 and W3Nb14O44 coexisting with W4Nb26O77 and a complicated intergrowth of W4Nb26O77, NNb2O5, W3Nb14O44, and Nb31O77F types of structure.  相似文献   

8.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

9.
The new (Nb2W4O19),TMA2, Na4(OH2)14(SO4) has been evidenced as a minor phase during the Nb2W4O19TMA (tetramethylammonium) salt synthesis. Its crystal structure has been refined from single crystal X-ray diffraction data, system monoclinic, a=10.166(5) Å, b=17.93(1) Å, c=24.81(1) Å, β=93.057(7)°, space group (S.G.) C2/c, Z=4, R1=3.96%, wR1=4.50%. It shows the stacking of cationic and anionic bidimensional layers. The anionic layer of formula [(Nb2W4O19), TMA2 ]2− is formed of isolated Lindqvist HPAs surrounded by TMA groups. The isolated layers adopt a trigonal symmetry that is lost in the crystal by the association of the cationic sheets. These later, of formula [Na4(OH2)14(SO4)]2+ form porous net-like sheets with nearly circular cavities of diameter 7.5 Å. groups host the available cavities in a disordered manner. The cohesion between the sheets is performed by both electrostatic interactions and a set of hydrogen bonds. In the cationic layers, the highly symmetrical surrounding of HPAs by TMA groups yields a homogeneous electrostatic field at their external surface leading to a statistic Nb/W disorder over the three available independent metallic positions. Then, XAS experiments at the L1/L3-W edge complementarily helped to highlight the preferential cis configuration of (Nb2W4O19)4− anions, help to the strong Nb vs W contrast in their contribution to the backscattering paths. Previously to these experiments, it was of course checked that both the two phases present in the prepared sample contain Nb2W4O19 anions with nearly unchanged geometry.  相似文献   

10.
A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W18O49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W18O49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W18O49 NRs, and they are highly selective and sensitive to NH3, acetone, and H2S with short response and recovery times. The Ag/AgCl/W18O49 NRs photocatlysts also possess higher photocatalytic performance than bare W18O49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W18O49 NRs composite were proposed.  相似文献   

11.
W18O49 samples were prepared by reduction of WO3 crystals at various temperatures (at about 1170, 1270, and 1370K) by equilibration with a gaseous buffer of controlled oxygen pressure. The samples were studied by high-resolution electron microscopy. The results show that an amorphous phase is an intermediary step in the formation of W18O49. Defects are very rarely observed in as-reduced W18O49, which differs in this respect from other tungsten oxides. Apart from twinning, however, three types of extended defects have been observed occasionally, and these are interpreted and discussed.  相似文献   

12.
Divalent zinc ions have been electrochemically inserted into W18O49, producing zinc bronzes. Under our experimental conditions, W18O49 accepts zinc reversibly as a guest up to 0.9 ions per formula. The reaction seems to proceed through the formation of a solid solution in which the W-O framework of the parent oxide is maintained. The location of the Zn2+ ions in the framework of W18O49 has been determined by neutron diffraction on a chemically prepared sample having the composition Zn0.34W18O49. As a main result, we found that Zn prefers to insert in one of the four types of quadrangular tunnels. More precisely, it is displaced from the center to occupy a low coordination site. This result indicates that a significant covalent character exists in the Zn-O bond.  相似文献   

13.
A hydrothermal reaction of WO3, CoCl2 and 4,4′-bipyridine, yields a novel organic-inorganic hybrid compound, Co2(bpy)6(W6O19)2, at 170°C. X-ray single crystal structure determination reveals a two-dimensional covalent structure belonging to monoclinic crystal system, space group C2/c, with cell parameters a=19.971(4) Å, b=11.523(2) Å, c=16.138(3) Å, β=96.49(3)°, V=3690.0 Å3 and Z=2. The hexatungstate, [W6O19]2−, acts as a building block in bidentate fashion to bridge the Co(II) centers in the crystal structure. The title compound is found to have an optical energy gap of 2.2 eV from UV-Vis-NIR reflectance spectra.  相似文献   

14.
The bonding in the ethyne adduct W2(μ-C2H2)(μ-ONp)2(ONp)6 (Np=CH2tBu) has been examined by various computational methods [Extended Hückel (EHMO), Fenske–Hall, and Gaussian 92 RHF (Restricted Hartree–Fock) and density functional (Becke-3LYP) calculations] employing the model compound W2(μ-C2H2)(μ-OH)2(OH)6. EHMO and Fenske–Hall calculations suggest, based on total orbital energy, that a μ-parallel ethyne geometry should have the lowest energy, although traditional frontier orbital arguments agree with the observance of a skewed acetylene bridge. Gaussian 92 computations reproduce the non-perpendicular/non-parallel μ-C2H2 geometry in close agreement to that observed in the solid-state (X-ray) structure, which leads us to suggest that the distortion is not sterically imposed by the attendant alkoxide ligands. The observed geometry can be rationalized in terms of Jahn–Teller distortional stabilization from either the μ-parallel or μ-perpendicular mode, i.e., the geometry is favored on electronic grounds, though the potential energy surface is rather shallow. These results are discussed in terms of previous studies of the addition of alkynes to d3–d3 dinuclear complexes of tungsten and in terms of relationships between d2-W(OR)4 and d8-Os(CO)4 fragments.  相似文献   

15.
W18O49 was oxidized in air at about 500K for different intervals of time. Defects of various kinds, related to structures of higher oxides, were observed. These were a coherent intergrowth of W12O34, {102}, and {103} crystallographic shear, and WO3-type structures. A new type of TTB structure was also observed as a defect. Its formation mechanism is proposed and discussed.  相似文献   

16.
The hydrothermal reaction of UO3, WO3, and CsIO4 leads to the formation of Cs6[(UO2)4(W5O21)(OH)2(H2O)2] and UO2(IO3)2(H2O). Cs6[(UO2)4(W5O21)(OH)2(H2O)2] is the first example of a hydrothermally synthesized uranyl tungstate. It's structure has been determined by single-crystal X-ray diffraction. Crystallographic data: tetragonal, space group Icm, , , Z=4, MoKα, , R(F)=2.84% for 135 parameters with 2300 reflections with I>2σ(I). The structure is comprised of two-dimensional anionic layers that are separated by Cs+ cations. The coordination polyhedra found in the novel layers consist of UO7 pentagonal bipyramids, WO6 distorted octahedra, and WO5 square pyramids. The UO7 polyhedra are formed from the binding of five equatorial oxygen atoms around a central uranyl, UO22+, unit. Both bridging and terminal oxo ligands are employed in forming the WO5 square pyramidal units, while oxo, hydroxo, and aqua ligands are found in the WO6 distorted octahedra. In the layers, four (UO2)O5 polyhedra corner share with equatorial oxygen atoms to form a U4O24 tetramer entity with a square site in the center; a tungsten atom populates the center of each of these sites to form a U4WO25 pentamer unit. The pentamer units that result are connected in two dimensions by edge-shared dimers of WO6 octahedra to form the two-dimensional [(UO2)4(W5O21)(OH)2(H2O)2]6- layers. The lack of inversion symmetry in Cs6[(UO2)4(W5O21)(OH)2(H2O)2] can be directly contributed to the WO5 square pyramids found in the pentamer units. In the structure, all of these polar polyhedra align their terminal oxygens in the same orientation, along the c axis, thus resulting in a polar compound.  相似文献   

17.
The preparation, single crystal growth, and crystallographic properties of a close-packed, eight-layer, hexagonal (a = 5.803 Å, c = 19.076 Å) modification having the stoichiometry Ba8Nb6Li2O24 and of a close-packed, ten-layer, hexagonal (a = 5.760 Å, c = 23.742 Å) phase with Ba10W6Li4O30 stoichiometry are discussed. The isostructural Ba8Ta6Li4O24 form of the eight-layer phase was also prepared (a = 5.802 Å, c = 19.085 Å). Proposed crystal structures involve the pairing of lithium and metal (Nb, Ta, or W) octahedra to yield face-sharing units. The relationship of this phenomenon to other known close-packed phases containing Li is demonstrated. An investigation of the Ba8Nb6Li2O24Ba10W6Li4O30 system is reported.A tetragonal bronze phase homogeneity region was delimited at 1200°C in the BaONb2O5Li2O system. A new orthorhombic phase (a = 10.197 Å, b = 14.882 Å, c = 7.942 Å) was prepared with the stoichiometry Ba4Li2Nb10O30.  相似文献   

18.
Solid-state reduction of WCl6 with Hg followed by incomplete sublimation of mercury chlorides generated the tritungsten decachloride—mercury chloride adducts W3Cl10(Hg2Cl2)2−x(HgCl2)x. Thermal equilibration of the solid-state products followed by sublimation of HgCl2 afforded single crystals that include the mercurous chloride adduct W3Cl10(Hg2Cl2)2. Single-crystal diffractometry revealed a one-dimensional polymer of tritungsten decachloride triangular clusters with novel terminal and inter-cluster-bridging ClHgHgCl ligands. The W3 cluster core has similar metrics to that of the benzyltriethylammonium salt of W33-Cl)(μ-Cl)3Cl9 3−. W3Cl10(Hg2Cl2)2 is the first reported adduct of the binary tungsten chloride W3Cl10. The ClHgHgCl ligands are more labile that the terminal chlorine atoms of W33-Cl)(μ-Cl)3Cl9 3−. These results demonstrate diverse roles and potential utility of main group element halide by-product ligands in solid-state reductions of transition metal halides.  相似文献   

19.
研究表明二元、三元钨基氧化物的红外吸收性能具有尺寸和形貌依赖性,但还没有普适性的物理学机理及计算方法。本工作基于Mie散射理论,推导了一维材料的长度与光吸收性能之间的关系,通过理论推导计算和实验验证,探究了纳米钨基氧化物的红外吸收性能与颗粒长度的关联性。首先,基于Mie散射理论的推演和计算,揭示了增加纳米Cs_(0.2)WO_3和W_(18)O_(49)材料长度可适度提高其近红外吸收性能的规律。其次,测试了合成的不同长度Cs_(0.2)WO_3纳米棒和W_(18)O_(49)纳米线的红外吸收性能,结果与理论计算及模拟相吻合。其中在2 500~20 000 nm波长范围内Cs_(0.2)WO_3纳米棒和W_(18)O_(49)纳米线随长度的变化趋势不同,Cs_(0.2)WO_3纳米棒的红外吸收性能随长度的增加而增加,而W_(18)O_(49)纳米线的红外吸收性能随长度的增加而减弱。Cs_(0.2)WO_3纳米棒和W_(18)0O_9纳米线的光热效应均随长度的增加而增加,增幅分别达18.5%和12.7%,再次验证了长度效应。  相似文献   

20.
A sustained release poly(DL-lactide-co-glycolide) (PLGA) microsphere delivery system to treat prostate cancer for a luteinizing hormone-releasing hormone (LHRH) antagonists, LXT-101 was prepared and evaluated in the paper. LXT-101 microspheres were prepared from PLGA by three methods: (1) double-emulsion solvent extraction/evaporation technique, (2) single-emulsion solvent extraction/evaporation technique, and (3) S/O/O (solid-in-oil-in-oil) method. The microspheres were investigated on drug loading, particle size, surface morphology and in vitro release profiles. An accelerated release approach was also established in order to expedite the evaluation periods. The in vivo evaluation of the microspheres was made by monitoring testosterone levels after subcutaneous administration to rats. The LXT-101 PLGA microspheres showed smooth and round surfaces according to a scanning electron microscopic investigation, and average particle size of ca. 30 mum according to laser diffractometry. The drug encapsulation efficiency of microspheres was influenced by LA/GA ratio of PLGA, salt concentrations, solvent mixture and preparation methods. Moreover, LA/GA ratio of PLGA, different preparation methods and different peptide stabilizers affected in vitro release of drugs. In vivo study, the testosterone levels were suppressed to castration up to 42 d as for the 7.5 mg/kg dose. And in vivo performance of LXT-101 microspheres was dose-dependent. The weights of rat sexual organs decreased and histopathological appearance of testes had little changes after 4-month microspheres therapy. This also testified that LXT-101 sustained release microspheres could exert the efficacy to suppress the testosterone level to castration with little toxicity. In conclusion, the PLGA microspheres could be a well sustained release system for LXT-101.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号