首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solid phase microextraction (HS-SPME)-GC-MS methodology was established for the analysis of 3-alkyl-2-methoxypyrazines (MPs) in wine using a stable isotope dilution assay. The compounds analysed were 3-isobutyl-2-methoxypyrazine (IBMP), 3-sec-butyl-2-methoxypyrazine (SBMP), and 3-isopropyl-2-methoxypyrazine (IPMP) using their respective deuterated analogues ([2H3]-IBMP, [2H3]-SBMP, [2H3]-IPMP) as internal standards, synthesised during this work. A divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fibre was selected for isolation of MPs and the effects of matrix parameters such as pH and ethanol concentration were examined in the development of the method. Best results were obtained at a pH of approximately 6 and with a wine dilution factor of 1:2.5, resulting in an ethanol concentration of approximately 5% (v/v). Relative standard deviations (RSDs) of replicate samples were 5.6-7% for all MPs at 5 ng L(-1) and <5% for 15 and 30 ng L(-1) samples. The limit of detection was <0.5 ng L(-1) in juice and 1-2 ng L(-1) in wine. The recovery efficiencies for spiked wine samples were between 99 and 102% for all three MPs. Using this method, we investigated the impact of the Multicoloured Asian Lady Beetle (MALB) on MPs in wine. In red wine fermented with live MALB, IPMP is the most prevalent MP detected, although SBMP concentrations are also increased and IBMP is unchanged from background levels. MALB that have been dead for 1 day before addition to juice can still contribute to elevated SBMP concentrations in wine, but not if they have been dead for 3 days or longer. Clarifying juice prior to fermentation leads to substantially lower IPMP concentration in the subsequent wine when compared with unclarified juice.  相似文献   

2.
Static headspace sampling technique coupled with gas chromatography and mass spectrometry was used to investigate the presence of volatile 2-alkyl-3-methoxypyrazines in three different species of ladybugs of the Coccinellidae family. The species investigated were Coccinella septempunctata, Harmonia axyridis and Hippodemia convergens. 2-isopropyl-3-methoxypyrazine (IPMP) was identified in all three species with detectable levels of 2-sec-butyl-3-methoxypyrazine (SBMP) and 3-isobutyl-2-methoxypyrazines (IBMP) in only Hippodemia convergens and Harmonia axyridis species. Relative amounts of 2-alkyl-3-methoxypyrazines based on body mass showed that Hippodemia convergens had the highest levels of all three methoxypyrazines and Coccinella septempunctata the least.  相似文献   

3.
Deng X  Liang G  Chen J  Qi M  Xie P 《Journal of chromatography. A》2011,1218(24):3791-3798
Production and fate of taste and odor (T&O) compounds in natural waters are a pressing environmental issue. Simultaneous determination of these complex compounds (covering a wide range of boiling points) has been difficult. A simple and sensitive method for the determination of eight malodors products of cyanobacterial blooms was developed using automatic purge and trap (P&T) coupled with gas chromatography-mass spectrometry (GC-MS). This extraction and concentration technique is solvent-free. Dimethylsulfide (DMS), dimethyltrisulfide (DMTS), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2-methylisoborneol (MIB), β-cyclocitral, geosmin (GSM) and β-ionone were separated within 15.3 min. P&T uses trap #07 and high-purity nitrogen purge gas. The calibration curves of the eight odors show good linearity in the range of 1-500 ng/L with a correlation coefficient above 0.999 (levels=8) and with residuals ranging from approximately 83% to 124%. The limits of detection (LOD) (S/N=3) are all below 1.5 ng/L that of GSM is even lower at 0.08 ng/L. The relative standard deviations (RSD) are between 3.38% and 8.59% (n=5) and recoveries of the analytes from water samples of a eutrophic lake are between 80.54% and 114.91%. This method could be widely employed for monitoring these eight odors in natural waters.  相似文献   

4.
5.
A method for the analysis of six taste and odour causing compounds in aqueous samples using the granular adsorbent, Ambersorb 572, and gas chromatography-high resolution mass spectrometry (GC-HRMS) has been developed. This method for the determination of geosmin, 2-methylisoborneol (2-MIB), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2,3,6-trichloroanisole (236-TCA) and 2,4,6-trichloroanisole (246-TCA) is highly productive [up to 40 samples per day + 23 quality control (QC) samples] and provides rapid (24-48 h) turnaround times. The analytes are extracted from water by the addition of Ambersorb 572 to the sample bottle and rolling for 1 h. The adsorbent is isolated by filtration and allowed to air dry for 1 h. The Ambersorb 572 is transferred to an autosampler vial and the analytes are desorbed into dichloromethane. The extract is analysed by GC-HRMS at 7000 resolving power (RP). Quantification is performed by isotope dilution and internal standard techniques utilizing d3-geosmin, d3-2-MIB, d5-246-TCA and 2-sec-butyl-3-methoxypyrazine (s-BMP). Method precisions of 3.5-5.8% and accuracies of +/- 5.7-8.9% were obtained. Reporting detection limits (RDLs) of 1.0 ng L-1 were obtained for 2-MIB, geosmin, IPMP and IBMP, while RDLs of 2.0 ng L-1 were obtained for 236-TCA and 246-TCA.  相似文献   

6.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

7.
Headspace solid-phase microextraction (HS-SPME; PDMS/DVB fibre) and ultrasonic solvent extraction (USE; solvent A: pentane and diethyl ether (1:2 v/v), solvent B: dichloromethane) followed by gas chromatography and mass spectrometry (GC, GC-MS) were used for the analysis of Prunus mahaleb L. honey samples. Screening was focused toward chemical composition of natural organic volatiles to determine if it is useful as a method of determining honey-sourcing. A total of 34 compounds were identified in the headspace and 49 in the extracts that included terpenes, norisoprenoids and benzene derivatives, followed by minor percentages of aliphatic compounds and furan derivatives. High vomifoliol percentages (10.7%-24.2%) in both extracts (dominant in solvent B) and coumarin (0.3%-2.4%) from the extracts (more abundant in solvent A) and headspace (0.9%-1.8%) were considered characteristic for P. mahaleb honey and highlighted as potential nonspecific biomarkers of the honey's botanical origin. In addition, comparison with P. mahaleb flowers, leaves, bark and wood volatiles from our previous research revealed common compounds among norisoprenoids and benzene derivatives.  相似文献   

8.
This study reports an optimized headspace-solid phase microextraction (HS-SPME) method for the determination of methoxypyrazines in wine. Analysis was performed by using comprehensive two-dimensional gas chromatography with novel detection capabilities, including nitrogen phosphorus detection (GC x GC-NPD) and time-of-flight mass spectrometry (GC x GC-TOFMS). In the latter, stable isotope dilution was performed for the quantitation of 2-methoxy-3-(2-methylpropyl) pyrazine (IBMP), using labelled 2-(2H3)methoxy-3-(2-methylpropyl)pyrazine (d3-IBMP) as the internal standard, and resolution of the two analogues was facilitated using the deconvolution capabilities of the TOFMS. This research represents the first report of HS-SPME with isotope dilution and GC x GC-TOFMS (GC x GC-IDTOFMS). Analysis by GC x GC-NPD enabled detection limits of 0.5 ng/L for the quantitation of IBMP, which was superior to that obtained using GC x GC-IDTOFMS (1.95 ng/L). Nevertheless, both methods were adequately sensitive for real wine analysis, yielding highly comparable IBMP concentrations of 26.1 and 27.8 ng/L, respectively, from a Sauvignon blanc wine. The complexity of the real wine headspace was simplified as a result of selective detection using GC x GC-NPD and, in the case of GC x GC-IDTOFMS, the use of extracted ion chromatograms (EICs).  相似文献   

9.
A direct quantitative method is presented that is based upon the use of multiple headspace solid phase microextraction (HS-SPME) to monitor biogenic volatile organic compounds (BVOCs) released from a living leaf of Pelargonium hortorum in situ. Seventeen BVOCs were detected by GC-MS after a single SPME extraction using a CAR/DVB/PDMS fibre. An internal standard was employed to determine the absolute amounts of seven terpenoid compounds released from a P. hortorum leaf. The quantitative analysis was performed over two days, with extraction preformed for 20 min every 3 h. The amount of volatiles extracted varied with the time of day, with two maxima recorded at 14:00 (day 1) and 17:00 (day 2), corresponding to 236 and 277 ng of the seven terpenoids recorded, respectively. These results indicate that multiple HS-SPME in combination with an internal standard is a simple, quick, and quantitative technique for analysising BVOC emissions from a live plant sample.  相似文献   

10.
Headspace solid-phase microextraction (HS-SPME) is proposed for isolating and determining the headspace volatiles formed during oxidation of fish-oil-in-water emulsions. Three different fiber coatings were tested and compared for sensitivity and reproducibility. A carboxen/polydimethylsiloxane (CAR-PDMS) fiber coating was found to be the most suitable for the analysis of emulsion volatiles. The main factors affecting the microextraction process on CAR-PDMS were then evaluated by a factorial design: amount of sample, time and temperature of extraction and stirring. The incubation of 0.5 g of emulsion at 60 degrees C during 30 min leads to the most effective extraction of volatiles associated with lipid oxidation of fish oil emulsions. The HS-SPME method coupled with GC-MS allowed the qualitative and quantitative analysis of the volatiles derived from oxidation of real fish oil enriched foods such as milk and mayonnaise. The method here proposed is very fast and simple and yields high sensitivity, with good repeatability for all target compounds.  相似文献   

11.
A procedure to determine 3-alkyl-2-methoxypyrazines in wines is described. It is based on the headspace solid-phase microextraction (HS-SPME) technique after a clean-up of the sample by distillation (previously acidified to pH 0.5) to remove ethanol and other volatile compounds that can interfere in the SPME. Determination is performed by means of capillary gas chromatography using a nitrogen-phosphorus detector. The method allows quantification of 3-isobutyl-2-methoxypyrazine, 3-sec-butyl-2-methoxypyrazine and 3-isopropyl-2-methoxypyrazine at their natural concentration levels and below their sensory thresholds in Cabernet Sauvignon and Merlot wines. The method was successfully applied to experimental red wines and the evolution of their pyrazine contents during the winemaking process was monitored. Pyrazine content increased during the first maceration day but did not change significantly during alcoholic and malolactic fermentation. Final contents in wines were 12-27 ng/l of 3-isobutyl-2-methoxypyrazine and 5-10 ng/l of 3-sec-butyl-2-methoxypyrazine.  相似文献   

12.
Sung YH  Li TY  Huang SD 《Talanta》2005,65(2):518-524
A method for the determination of the earthy and musty odors geosmin, 2-methylisoborneol (2-MIB), 2-isobutyl-3-methoxy pyrazine (IBMP), 2-isopropyl-3-methoxy pyrazine (IPMP) and 2,4,6-trichloroanisole (2,4,6-TCA) in water by headspace solid-phase microextraction (HSSPME) combined with gas chromatography-ion trap mass spectrometry (GC-ITMS) is described. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, extraction temperature, extraction time, desorption temperature, desorption time, ionic strength and elutropic strength and pH of samples). The method shows good linearity over the concentration range 1-500 ng l−1 and gives detection limits of sub-part per trillion levels for all compounds. Good precision (5.9-9.8%) is obtained using IBMP as internal standard. Finally, the method was successfully applied to analyze earthy and musty odors in tap water and lake water.  相似文献   

13.
Future understanding of differences in the composition and sensory attributes of wines require improved analytical methods which allow the monitoring of a large number of volatiles including those present at low concentrations. This study presents the optimization and application of a headspace solid-phase microextraction (HS-SPME) method for analysis of wine volatiles by comprehensive two-dimensional gas chromatography (GC×GC) time-of-flight mass spectrometry (TOFMS). This study demonstrates an important advancement in wine volatile analysis as the method allows for the simultaneous analysis of a significantly larger number of compounds found in the wine headspace compared to other current single dimensional GC-MS methodologies. The methodology allowed for the simultaneous analysis of over 350 different tentatively identified volatile and semi-volatile compounds found in the wine headspace. These included potent aroma compound classes such as monoterpenes, norisoprenoids, sesquiterpenes, and alkyl-methoxypyrazines which have been documented to contribute to wine aroma. It is intended that wine aroma research and wine sensory research will utilize this non-targeted method to assess compositional differences in the wine volatile profile.  相似文献   

14.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

15.
In this study the investigation of the aroma compounds of dried fruits of Evodia rutaecarpa (Juss.) Benth. and E. rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang (i.e. E. officinalis Dode) (Rutaceae family) was carried out to identify the odorous target components responsible for the characteristic aroma of these valuable natural products. To avoid the traditional and more time-consuming hydrodistillation, the analyses were carried out by means of headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). The SPME headspace volatiles were collected using a divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber. The extraction conditions were optimized using a response surface experimental design to analyze the effect of three factors: extraction temperature, equilibrium time and extraction time. The best response was obtained when the extraction temperature was around 80 degrees C, equilibrium time near 25 min and extraction time close to 18 min. Analyses were performed by GC-MS with a 5% diphenyl-95% dimethyl polysiloxane (30 m x 0.25 mm I.D., film thickness 0.25 microm) capillary column using He as the carrier gas and a programmed temperature run. The main components of the HS-SPME samples of E. rutaecarpa (concentration >3.0%) were limonene (33.79%), beta-elemene (10.78%), linalool (8.15%), myrcene (5.83%), valencene (4.73%), beta-caryophyllene (4.62%), linalyl acetate (4.13%) and alpha-terpineol (3.99%). As for E. officinalis, the major compounds were myrcene (32.79%), limonene (18.36%), beta-caryophyllene (9.92%), trans-beta-ocimene (6.04%), linalool (5.88%), beta-elemene (7.85%) and valencene (4.62%).  相似文献   

16.
A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid-liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.HS sampling coupled with GC-MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66-37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8-13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6-113.9%.The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.The DLLME technique coupled with GC-MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.  相似文献   

17.

Background  

Traditionally, the essential oil of aromatic herbs is obtained using hydrodistillation (HD). Because the emitted volatile fraction plays a fundamental role in a plant's life, various novel techniques have been developed for its extraction from plants. Among these, headspace solid phase microextraction (HS-SPME) can be used to obtain a rapid fingerprint of a plant's headspace. Daucus crinitus Desf. is a wild plant that grows along the west coast of Algeria. Only a single study has dealt with the chemical composition of the aerial part oils of Algerian D. crinitus, in which isochavicol isobutyrate (39.0%), octyl acetate (12.3%), and β-caryophyllene (5.4%) were identified. Using GC-RI and GC-MS analysis, the essential oils and the volatiles extracted from separated organs of D. crinitus Desf. were studied using HS-SPME.  相似文献   

18.
Jasmine tea is widely loved by the public because of its unique and pleasant aroma and taste. The new scenting process is different from the traditional scenting process, because the new scenting process has a thin pile height to reduce the high temperature and prolong the scenting time. We qualified and quantified volatiles in jasmine and jasmine tea during the scenting process by gas chromatography-mass spectrometry (GC-MS) with a headspace solid-phase microextraction (HS-SPME). There were 71 and 78 effective volatiles in jasmine and jasmine tea, respectively, including 24 terpenes, 9 alcohols, 24 esters, 6 hydrocarbons, 1 ketone, 3 aldehydes, 2 nitrogen compounds, and 2 oxygen-containing compounds in jasmine; 29 terpenes, 6 alcohols, 28 esters, 8 nitrogen compounds, 1 aldehyde, and 6 other compounds in jasmine tea. The amounts of terpenes, esters, alcohols, nitrogen compounds, and hydrocarbons in jasmine and tea rose and then fell. The amount of oxygenated compounds of tea in the new scenting process first rose and then fell, while it showed a continuous upward trend during the traditional process. The amount of volatiles in jasmine and tea produced by the new scenting process were higher than that of the traditional scenting process at the same time. This study indicated that jasmine tea produced by the new scenting process had better volatile quality, which can provide proof for the new scenting process.  相似文献   

19.
Biodiversity of volatile organic compounds from five French ferns   总被引:1,自引:0,他引:1  
Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号