首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
The emission spectra of some heteropolytungstates containing europium, K.[Eu(XW11 O39)2](X = P, Ge, As, or Ga), K17[EuCAs2W17O61)2] and K16H9EuAs4W40O140 have been investigated and the structures of these compounds are discussed. The emission spectra at room temperature are very similar to each other in terms of both the number of bands and transition frequencies, showing that they have the similar structures to those of K16[Ce(P2W17O61)2] and K12[U(GeW11O39)2].  相似文献   

2.
The redox properties of K17[Ln(As2W17O61)2](Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm or Yb) in solution were investigated using polarographic and cyclic voltammographic methods. Experimental results indicate that the heteropolyanions underwent three-step-two-electron-tungsten-reduction processes, and each reduction process was accompanied by adding two protons.  相似文献   

3.
The ultrathin multilayer films of rare-earth-containing polyoxometalate cluster K17[Eu(P2Mo17O61)2](EuPMo) and poly(allylamine hydrochloride) (PAH) have been prepared by the Layer-by-Layer(LbL) selfassembly method. The photoluminescent behavior of the films investigated at room temperature shows the Eu^3 characteristic emission pattern of ^5Do→^7FJ(J=1—4). The occurrence of the photoluminescent activity confirms the potential of creating luminescent multilayer films with polyoxometalates (POMs).  相似文献   

4.
Four Dawson type heteropolyoxotungstates substituted by noble metals with the general formula (TBA)n[As2W17M(OH2)O61], where M=PdII, RuIII, IrIV and PtIV, are prepared by filling the vacant site of the lacunary precursor a2-K10As2W17O61. UV-vis and IR spectra are similar to the other transition metal substituted Dawson type tungstodiarsenates. EPR result provides direct evidence to identify the presence of noble metal cation. Electrochemical behavior investigated by cyclic voltammetry in acetonitrile displays four reversible one-electron redox couples attributed to the W(VI-V) process of tungsten-oxo framework.  相似文献   

5.
Heteropoly-complexes K17[Ln(CuW11O39)2].xH2O(Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy) were prepared. The properties of the products were investigated by ion-exchange, conductometric titration, IR, UV and X-ray powder diffraction. The results show that the structure of the products is similar to that of U(a-Ge11O39)2 and consistent with the model proposed by Peacock.  相似文献   

6.
在水溶液条件下以六缺位的[H2P2W12O48)]12-和Eu髥为反应前躯体得到了1个新的多金属氧酸盐化合物[Eu3(H2O)17(α2-HP2W17O61)].5H2O(1),对其进行了元素分析、红外光谱、热重、荧光等表征,并用X-射线单晶衍射测定了它的晶体结构。化合物1含有双支撑的多阴离子簇[{Eu(H2O)7}2{Eu(H2O)3(α2-P2W17)}2]8-,并进一步通过Eu髥连接形成了延c轴方向的一维链。室温条件下的荧光光谱研究表明:化合物1显示了强的红光发射。  相似文献   

7.
One novel polyoxometalate compound connected via trivalent cerium cation as bridge H2{[K(H2O)2]2[Ce(H2O)5]2(H2Mo1.16W10.84O42)}·8H2O 1 was designed and synthesized in aqueous solution. X-ray diffraction analysis reveals that the structure of 1 is a three-dimensional framework assembled from the arrangement of H2Mo1.16W10.84O42 (named paradodecmetalate-B) and Ce(H2O)53 containing two planes, which are constructed through the unification of H2Mo1.16W10.84O4210- and Ce(H2O)53 along the [100] and [001] directions. Crystal data: H96Ce4K4Mo2.32O128W21.68, Mr = 7074.89, monoclinic, P21/n, a = 12.5037(17), b = 17.002(2), c = 12.7473(17) (A), β = 105.966(2)°, V = 2605.4(6) (A)3, Z = 1, Dc = 4.509 g/cm3, F(000) = 3132, μ = 26.098 mm(1, R = 0.0377 and wR = 0.0789 (I > 2σ(I)).  相似文献   

8.
One novel polyoxometalate compound connected via trivalent cerium cation as bridge H2{[K(H2O)2]2[Ce(H2O)5]2(H2Mo1.16W10.84O42)}·8H2O 1 was designed and synthesized in aqueous solution. X-ray diffraction analysis reveals that the structure of 1 is a three-dimensional framework assembled from the arrangement of H2Mo1.16W10.84O42 (named paradodecmetalate-B) and Ce(H2O)53 containing two planes, which are constructed through the unification of H2Mo1.16W10.84O4210- and Ce(H2O)53 along the [100] and [001] directions. Crystal data H96Ce4K4Mo2.32O128W21.68, Mr = 7074.89, monoclinic, P21/n, a = 12.5037(17), b = 17.002(2), c = 12.7473(17) (A), β = 105.966(2)°, V = 2605.4(6) (A)3, Z = 1, Dc = 4.509 g/cm3, F(000) = 3132, μ = 26.098 mm(1, R = 0.0377 and wR = 0.0789 (I > 2σ(I)).  相似文献   

9.
One novel polyoxometalate compound connected via trivalent cerium cation as bridge H2{[K(H2O)2]2[Ce(H2O)5]2(H2Mo1.16W10.84O42)}·8H2O 1 was designed and synthesized in aqueous solution. X-ray diffraction analysis reveals that the structure of 1 is a three-dimensional framework assembled from the arrangement of H2Mo1.16W10.84O42 (named paradodecmetalate-B) and Ce(H2O)53+ containing two planes, which are constructed through the unification of H2Mo1.16W10.84O4210- and Ce(H2O)53+ along the [100] and [001] directions. Crystal data: H96Ce4K4Mo2.32O128W21.68, Mr = 7074.89, monoclinic, P21/n, a = 12.5037(17), b = 17.002(2), c = 12.7473(17) A, β = 105.966(2)°, V = 2605.4(6) 3, Z = 1, Dc = 4.509 g/cm3, F(000) = 3132, μ = 26.098 mm-1, R = 0.0377 and wR = 0.0789 (I > 2σ(I)).  相似文献   

10.
Radionuclides with long half-life are toxic,and thereby result in serious threat to human beings and ecological balance.Herein,a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole(Mn O_2@PPy)core/shell structures for efficient removal of U(Ⅵ)and Eu(Ⅲ)from aqueous solutions.The adsorption of U(Ⅵ)and Eu(Ⅲ)were investigated under different kinds of experimental conditions.The experimental results suggested that the adsorption of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy were greatly affected by p H.U(Ⅵ)adsorption on Mn O_2@PPy was independent of ionic strength at p H6.0,and dependent on ionic strength at p H6.0.However,Eu(Ⅲ)adsorption on Mn O_2@PPy was independent of ionic strength at the whole p H range of experimental conditions.The maximum adsorption capacities(q_(max))of U(Ⅵ)and Eu(Ⅲ)were 63.04 and54.74 mg g~(-1)at T=298 K,respectively.The BET,XRD,FTIR and XPS analysis evidenced that high adsorption capacities of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy were mainly due to high surface area and rich metal oxygen-containing group(i.e.,Mn–OH and Mn–O),and the interaction was mainly attributed to strong surface complexation and electrostatic interaction.This study highlighted the excellent adsorption performance of U(Ⅵ)and Eu(Ⅲ)on Mn O_2@PPy and could provide the reference for the elimination of radionuclides in real wastewater management.  相似文献   

11.
The redox speciation of Eu(III) in the 1:1 stoichiometric complex with the alpha-1 isomer of the Wells-Dawson anion, [alpha-1-P 2W 17O 61] (10-), was studied by electrochemical techniques (cyclic voltammetry and bulk electrolysis), in situ XAFS (X-ray absorption fine structure) spectroelectrochemistry, NMR spectroscopy ( (31)P), and optical luminescence. Solutions of K 7[(H 2O) 4Eu(alpha-1-P 2W 17O 61)] in a 0.2 M Li 2SO 4 aqueous electrolyte (pH 3.0) show a pronounced concentration dependence to the voltammetric response. The fully oxidized anion and its reduced forms were probed by Eu L 3-edge XANES (X-ray absorption near edge structure) measurements in simultaneous combination with controlled potential electrolysis, demonstrating that Eu(III) in the original complex is reduced to Eu(II) in conjunction with the reduction of polyoxometalate (POM) ligand. After exhaustive reduction, the heteropoly blue species with Eu(II) is unstable with respect to cluster isomerization, fragmentation, and recombination to form three other Eu-POMs as well as the parent Wells-Dawson anion, alpha-[P 2W 18O 62] (6-). EXAFS data obtained for the reduced, metastable Eu(II)-POM before the onset of Eu(II) autoxidation provides an average Eu-O bond length of 2.55(4) A, which is 0.17 A longer than that for the oxidized anion, and consistent with the 0.184 A difference between the Eu(II) and Eu(III) ionic radii. The reduction of Eu(III) is unusual among POM complexes with Lindqvist and alpha-2 isomers of Wells-Dawson anions, that is, [Eu(W 5O 18) 2] (9-) and [Eu(alpha-2-As 2W 17O 61) 2] (17-), but not to the Preyssler complex anion, [EuP 5W 30O 110] (12-), and fundamental studies of materials based on coupling Eu and POM redox properties are still needed to address new avenues of research in europium hydrometallurgy, separations, and catalysis sciences.  相似文献   

12.
镧系元素的双(十七钨二砷)杂多酸钾的合成和鉴定   总被引:1,自引:0,他引:1  
刘景福  陈新  王恩波  阎德怀  刘宗绪 《化学学报》1988,46(12):1168-1174
本文报道了镧系元素的杂多钨砷酸钾K17[Ln(As2W17O61)2].xH2O(Ln=La, Ce,Pr, Nd, Sm, En, Gd, Tb, Dy, Tm, Yb)的合成方法和X射线粉末衍射, 紫外, 红外, 差热, X光电子能谱, 有效磁矩及极谱的研究结果.  相似文献   

13.
We have isolated the 1:1 Ln:[alpha-2-P2W17O61]10- complexes for a series of lanthanides. The single-crystal X-ray structure of the Eu3+ analogue reveals two identical [Eu(H2O)3(alpha-2-P2W17O61)]7- moieties connected through two Eu-O-W bonds, one from each polyoxometalate unit. An inversion center relates the two polyoxometalate units. The Eu(III) ion is substituted for a [WO]4+ unit in the "cap" region of the tungsten-oxygen framework of the parent Wells-Dawson ion. The point group of the dimeric molecule is Ci. The extended structure is composed of the [Eu(H2O)3(alpha-2-P2W17O61)]214- anions linked together by surface-bound potassium cations. The space group is P, a = 12.7214(5) A, b = 14.7402(7) A, c = 22.6724(9) A, alpha = 71.550(3), beta = 84.019(3)degrees, gamma = 74.383(3), V = 3883.2(3) A3, Z = 1. The solution studies, including 183W NMR spectroscopy and luminescence lifetime measurements, show that the molecules dissociate in solution to form monomeric [Ln(H2O)4(alpha-2-P2W17O61)]7- species.  相似文献   

14.
15.
The alpha-1 and alpha-2 isomers of the monovacant Wells-Dawson heteropolyoxoanion [P(2)W(17)O(61)](10-) are complexants of trivalent rare-earth (RE) ions and serve to stabilize otherwise reactive tetravalent lanthanide (Ln) and actinide (An) ions in aqueous solution. Aspects of the bonding of Ln ions with alpha-1-[P(2)W(17)O(61)](10-) and alpha-2-[P(2)W(17)O(61)](10-) were investigated to address issues of complex formation and stability. We present structural insights about the Ln(III) coordination environment and hydration in two types of stoichiometric complexes, [Ln(alpha-1-P(2)W(17)O(61))](7-) and [Ln(alpha-2-X(2)W(17)O(61))(2)](17-) (for Ln identical with Sm, Eu, Lu; X identical with P, As). The crystal and molecular structures of [(H(2)O)(4)Lu(alpha-1-P(2)W(17)O(61))](7-) (1) and [Lu(alpha-2-P(2)W(17)O(61))(2)](17-) (2) were solved and refined through use of single-crystal X-ray diffraction. The crystallographic results are supported with corresponding insights from XAFS (X-ray absorption fine structure) for a series of nine solid-state complexes as well as from optical luminescence spectroscopy of the Eu(III) analogues in aqueous solution. All the Ln ions are eight-coordinate with oxygen atoms in a square antiprism arrangement. For the 1:1 stoichiometric Ln/alpha-1-[P(2)W(17)O(61)](10-) complexes, the Ln ions are bound to four O atoms of the lacunary polyoxometalate framework in addition to four O atoms from solvent (water) molecules as [(H(2)O)(4)Ln(alpha-1-P(2)W(17)O(61))](7-). This structure (1) is the first of its kind for any metal complex of alpha-1-[P(2)W(17)O(61)](10-), and the data indicate that the general stoichiometry [(H(2)O)(4)Ln(alpha-1-P(2)W(17)O(61))](7-) is maintained throughout the lanthanide series. For the 1:2 stoichiometric Ln/alpha-2-[X(2)W(17)O(61)](10-) complexes, no water molecules are in the Ln-O(8) coordination sphere. The Ln ions are bound to eight O atoms-four from each of two heteropolyanions-as [Ln(alpha-2-X(2)W(17)O(61))(2)](17-). The average Ln-O interatomic distances decrease across the lanthanide series, consistent with the decreasing Ln ionic radius.  相似文献   

16.
The incorporation of lanthanides into polyoxometalates provides entry to new classes of potentially useful materials that combine the intrinsic properties of both constituents. To utilize the [alpha1-Ln(H2O)4P2W17O61]7- species in applications of catalysis and development of luminescent materials, the chemistry of this family of lanthanide polyoxometalates in organic solvents has been developed. Organic-soluble polyoxometalate-lanthanide complexes TBA5H2[alpha1-Ln(H2O)4P2W17O61] (Ln = La(III), Sm(III), Eu(III), Yb(III)) were prepared and characterized by elemental analysis, acid-base titration, IR, 31P NMR, and mass spectrometry. The synthetic procedure involves a cation metathesis reaction in aqueous solution under strict pH control. A solid-liquid-phase transfer protocol yielded a unique species (TBA)8K3[Yb(alpha1-YbP2W17O61)2] with three ytterbium ions and two [alpha1-P2W17O61]10- polyoxotungstates. A centrosymmetric dimeric complex [{alpha1-La(H2O)4P2W17O61}2]14- was crystallized from aqueous solution and characterized by X-ray diffraction. ESI mass spectral analysis of the complexes TBA5H2[alpha1-Ln(H2O)4P2W17O61] shows that similar dimers exist in organic solution, in particular for the early lanthanides. Fragmentation in the mass spectrometer of the complexes from dry acetonitrile solution involves double protonation of an oxo ligand and loss of one water molecule. Low mass tungstate fragments combine into [(WO3)n]2- (n = 1-5) ions and their condensation products with phosphate. Reaction of TBA5H2[alpha1-Eu(H2O)4P2W17O61] with 1,10-phenanthroline or 2,2'-bipyridine showed an increase of the europium luminescence. This result is explained by the formation of a ternary complex of [alpha1-Eu(H2O)4P2W17O61]7- and two sensitizing ligands.  相似文献   

17.
The incorporation of lanthanide ions into polyoxometalates may be a unique approach to generate new luminescent, magnetic, and catalytic functional materials. To realize these new applications of lanthanide polyoxometalates, it is imperative to understand the solution speciation chemistry and its impact on solid-state materials. In this study we find that the aqueous speciation of europium(III) and the trivacant polyoxometalate, PW9O34 9-, is a function of pH, countercation, and stoichiometry. For example, at low pH, the lacunary (PW11O39)7- predominates and the 1:1 Eu(PW11O39)4-, 2, forms. As the pH is increased, the 1:2 complex, Eu(PW11O39)2 11- species, 3, and (NH4)22[(Eu2PW10O38)4(W3O8(H2O)2(OH)4].44H2O, a Eu8 hydroxo/oxo cluster, 1, form. Countercations modulate this effect; large countercations, such as K+ and Cs+, promote the formation of species 3 and 1. Addition of Al(III) as a counterion results in low pH and formation of [Eu(H2O)3(alpha-2-P2W17O61)]2, 4, with Al(III) counterions bound to terminal W-O bonds. The four species observed in these speciation studies have been isolated, crystallized, and characterized by X-ray crystallography, solution multinuclear NMR spectroscopy, and other appropriate tech-niques. These species are 1, (NH4)22[(Eu2PW10O38)4(W3O8(H2O)2(OH)4].44H2O (P; a=20.2000(0), b=22.6951(6), c=25.3200(7) A; alpha=65.6760(10), beta=88.5240(10), gamma=86.0369(10) degrees; V=10550.0(5) A3; Z=2), 2, Al(H3O)[Eu(H2O)2PW11O34].20H2O (P, a=11.4280(23), b=11.5930(23), c=19.754(4) A; alpha=103.66(3), beta=95.29(3), gamma=102.31(3) degrees; V =2456.4(9) A3; Z=2), 3, Cs11Eu(PW11O34)2.28H2O (P; a=12.8663(14), b=19.8235(22), c=21.7060(23) A; alpha=114.57(0), beta=91.86(0), gamma=102.91(0) degrees ; V=4858.3(9) A3; Z=2), 4, Al2(H3O)8[Eu(H2O)3(alpha-2-P2W17O61)]2.29H2O (P; a=12.649(6), b=16.230(8), c=21.518(9) A; alpha=111.223(16), beta=94.182(18), gamma=107.581(17) degrees ; V=3842(3) A3; Z=1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号