首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we introduce the notion of weak quasigroups, which are quasigroup operations defined almost everywhere on some set. Then, we prove that the topological entropy and the ergodic period of an invertible expansive ergodically supported dynamical system \((X,T)\) with the shadowing property establish a sufficient criterion for the existence of quasigroup operations defined almost everywhere outside of universally null sets and for which \(T\) is an automorphism. Furthermore, we find a decomposition of the dynamics of \(T\) in terms of \(T\) -invariant weak topological subquasigroups.  相似文献   

2.
In this paper we discuss a topological treatment for the planar system 0.1 $$\begin{aligned} z'=f(t,z)+g(t,z) \end{aligned}$$ where $f:\mathbb {R}\times \mathbb {R}^{2}\longrightarrow \mathbb {R}^{2}$ and $g:\mathbb {R}\times \mathbb {R}^{2}\longrightarrow \mathbb {R}^{2}$ are $T$ -periodic in time and $g(t,z)$ is bounded. Namely, we study the effect of $g(t,z)$ in two different frameworks: isochronous centers and time periodic systems having subharmonics. The main tool employed in the proofs consists of a topological strategy to locate fixed points in the class of orientation preserving embedding under the condition of some recurrence properties. Generally speaking, our topological result can be considered as an extension of the main result in Brown (Pac J Math 143:37–41, 1990) (concerning two cycles) to any recurrent point.  相似文献   

3.
The present paper introduces both the notions of Lagrange and Poisson stabilities for semigroup actions. Let \(S\) be a semigroup acting on a topological space \(X\) with mapping \(\sigma :S\times X\rightarrow X\) , and let \(\mathcal {F}\) be a family of subsets of \(S\) . For \(x\in X\) the motion \(\sigma _{x}:S\rightarrow X\) is said to be forward Lagrange stable if the orbit \(Sx\) has compact closure in \(X\) . The point \(x\) is forward \(\mathcal {F}\) -Poisson stable if and only if it belongs to the limit set \(\omega \left( x,\mathcal {F}\right) \) . The concept of prolongational limit set is also introduced and used to describe nonwandering points. It is shown that a point \(x\) is \( \mathcal {F}\) -nonwandering if and only if \(x\) lies in its forward \(\mathcal {F} \) -prolongational limit set \(J\left( x,\mathcal {F}\right) \) . The paper contains applications to control systems.  相似文献   

4.
This paper is on the so called inverse problem of ordinary differential equations, i.e. the problem of determining the differential system satisfying a set of given properties. More precisely we characterize under very general assumptions the ordinary differential equations in \(\mathbb {R}^N\) which have a given set of either \(M\) partial integrals, or \(M first integral, or \(M partial and first integrals. Moreover, for such systems we determine the necessary and sufficient conditions for the existence of \(N-1\) independent first integrals. We give two relevant applications of the solutions of these inverse problem to constrained Lagrangian and Hamiltonian systems respectively. Additionally we provide the general solution of the inverse problem in dynamics.  相似文献   

5.
We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.  相似文献   

6.
The current paper is devoted to the study of semilinear dispersal evolution equations of the form $$\begin{aligned} u_t(t,x)=(\mathcal {A}u)(t,x)+u(t,x)f(t,x,u(t,x)),\quad x\in \mathcal {H}, \end{aligned}$$ where $\mathcal {H}=\mathbb {R}^N$ or $\mathbb {Z}^N,\; \mathcal {A}$ is a random dispersal operator or nonlocal dispersal operator in the case $\mathcal {H}=\mathbb {R}^N$ and is a discrete dispersal operator in the case $\mathcal {H}=\mathbb {Z}^N$ , and $f$ is periodic in $t$ , asymptotically periodic in $x$ (i.e. $f(t,x,u)-f_0(t,x,u)$ converges to $0$ as $\Vert x\Vert \rightarrow \infty $ for some time and space periodic function $f_0(t,x,u)$ ), and is of KPP type in $u$ . It is proved that Liouville type property for such equations holds, that is, time periodic strictly positive solutions are unique. It is also proved that if $u\equiv 0$ is a linearly unstable solution to the time and space periodic limit equation of such an equation, then it has a unique stable time periodic strictly positive solution and has a spatial spreading speed in every direction.  相似文献   

7.
Synchronization in a one-dimensional chain of Kuramoto oscillators with periodic boundary conditions is studied. An algorithm to rapidly calculate the critical coupling strength \(K_c\) for complete frequency synchronization is presented according to the mathematical constraint conditions and the periodic boundary conditions. By this new algorithm, we have checked the relation between \(\langle K_c\rangle \) and \(N\) , which is \(\langle K_c\rangle \sim \sqrt{N}\) , not only for small \(N\) , but also for large \(N\) . We also investigate the heavy-tailed distribution of \(K_c\) for random intrinsic frequencies, which is obtained by showing that the synchronization problem is equivalent to a discretization of Brownian motion. This theoretical result was checked by generating a large sample of \(K_c\) for large \(N\) from our algorithm to get the empirical density of \(K_c\) . Finally, we derive the permutation for the maximum coupling strength and its exact expression, which grows linearly with \(N\) and would provide the theoretical support for engineering applications.  相似文献   

8.
L. Deseri  D. R. Owen 《Meccanica》2014,49(12):2907-2932
A recent field theory of elastic bodies undergoing non-smooth submacroscopic geometrical changes (disarrangements) provides a setting in which, for a given homogeneous macroscopic deformation \(F\) of the body, there are typically a number of different states \(G\) of smooth, submacroscopic deformation (disarrangement phases) available to the body. A tensorial consistency relation and the inequality \(\det G\le \det F\) that guarantees that \(F\) accommodates \(G\) determine the totality of disarrangement phases \(G\) corresponding to \(F\) , and it is natural to seek for a given \(F\) those disarrangement phases that minimize the Helmholtz free energy (stable disarrangement phases). We introduce these concepts in the particular context of continuous bodies comprised of many small elastic bodies (elastic aggregates) and in the context where disarrangements do not contribute to the Helmholtz free energy (purely dissipative disarrangements). In this setting, the Helmholtz free energy response \(G\longmapsto \varPsi (G)\) of the pieces of the aggregate determines the totality of disarrangement phases corresponding to \(F\) , which necessarily includes the phase \(G=F\) (compact phase) in which every piece of the aggregate undergoes the given macroscopic deformation \(F\) . When the response function \(\varPsi \) is isotropic and smooth, and when \(\varPsi \) possesses standard semiconvexity and growth properties, the body also admits phases of the form \(G=\zeta _{\min }R\) (loose phases) with \(R\) an arbitrary rotation, provided that \(\zeta _{\min }R \) satisfies the accommodation inequality \(\zeta _{\min }^{3}\le \det F\) . Loose phases, when available, achieve the global minimum \(\varPsi (\zeta _{\min }R)\) of the free energy and consequently are stable and stress-free. When \( \varPsi (G)\) has the specific form \(\varPsi _{\alpha \beta }(G)=(\alpha /2)(\det G)^{-2}+(\beta /2)tr(GG^{T})\) , with \(\alpha \) , \(\beta \) given elastic constants, we determine all of the disarrangement phases corresponding to \(F\) . These include not only the compact and loose phases, but also disarrangement phases \(G\) in which the stress \(D\varPsi (G)\) is uniaxial or planar. Our main result (“stability implies no-tension”) is the assertion that every stable disarrangement phase for \(\varPsi _{\alpha \beta }\) cannot support tensile tractions, and our treatment of elastic aggregates thus provides a natural setting for the emergence of no-tension materials whose response in compression is non-linear. Existing treatments of no-tension materials assume at the outset that the body cannot support tension and that the response in compression is linear.  相似文献   

9.
10.
In Dissipative Euler Flows and Onsager’s Conjecture. arxiv.1205.3626, preprint, 2012, De Lellis and Székelyhidi construct Hölder continuous, dissipative (weak) solutions to the incompressible Euler equations in the torus ${{\mathbb T}^3}$ . The construction consists of adding fast oscillations to the trivial solution. We extend this result by establishing optimal h-principles in two and three space dimensions. Specifically, we identify all subsolutions (defined in a suitable sense) which can be approximated in the H ?1-norm by exact solutions. Furthermore, we prove that the flows thus constructed on ${{\mathbb T}^3}$ are genuinely three-dimensional and are not trivially obtained from solutions on ${{\mathbb T}^2}$ .  相似文献   

11.
We derive continuous dependence estimates for weak entropy solutions of degenerate parabolic equations with nonlinear fractional diffusion. The diffusion term involves the fractional Laplace operator, \({\triangle^{\alpha/2}}\) for \({\alpha \in (0,2)}\) . Our results are quantitative and we exhibit an example for which they are optimal. We cover the dependence on the nonlinearities, and for the first time, the Lipschitz dependence on α in the BV-framework. The former estimate (dependence on nonlinearity) is robust in the sense that it is stable in the limits \({\alpha \downarrow 0}\) and \({\alpha \uparrow 2}\) . In the limit \({\alpha \uparrow 2}\) , \({\triangle^{\alpha/2}}\) converges to the usual Laplacian, and we show rigorously that we recover the optimal continuous dependence result of Cockburn and Gripenberg (J Differ Equ 151(2):231–251, 1999) for local degenerate parabolic equations (thus providing an alternative proof).  相似文献   

12.
Flame turbulence interaction is one of the leading order terms in the scalar dissipation \(\left (\widetilde {\varepsilon }_{c}\right )\) transport equation [35] and is thus an important phenomenon in premixed turbulent combustion. Swaminathan and Grout [36] and Chakraborty and Swaminathan [15, 16] have shown that the effect of strain rate on the transport of \(\widetilde {\varepsilon }_{c}\) is dominated by the interaction between the fluctuating scalar gradients and the fluctuating strain rate, denoted here by \(\overline {\rho }\widetilde {\Delta }_{c}= \overline {\rho {\alpha }\nabla c^{\prime \prime }S_{ij}^{\prime \prime }\nabla c^{\prime \prime }}\) ; this represents the flame turbulence interaction. In order to obtain an accurate representation of this phenomenon, a new evolution equation for \(\widetilde {\Delta }_{c}\) has been proposed. This equation gives a detailed insight into flame turbulence interaction and provides an alternative approach to model the important physics represented by \(\widetilde {\Delta }_{c}\) . The \(\widetilde {\Delta }_{c}\) evolution equation is derived in detail and an order of magnitude analysis is carried out to determine the leading order terms in the \(\widetilde {\Delta }_{c}\) evolution equation. The leading order terms are then studied using a Direct Numerical Simulation (DNS) of premixed turbulent flames in the corrugated flamelet regime. It is found that the behaviour of \(\widetilde {\Delta }_{c}\) is determined by the competition between the source terms (pressure gradient and the reaction rate), diffusion/dissipation processes, turbulent strain rate and the dilatation rate. Closures for the leading order terms in \(\widetilde {\Delta }_{c}\) evolution equation have been proposed and compared with the DNS data.  相似文献   

13.
A higher order version of Cosserat Operators is introduced. With a compactness result (the proof of which we can only sketch here, for details see Riedl in Cosserat operators of higher order and applications, PhD thesis, University of Bayreuth, 2010) based on a regularization property of these operators we gain insight to invertibility of the operator div : ${\underline{H}^{m,q}_0 (G) \rightarrow H^{m-1,q}_{0,0} (G)}$ , where ${m \in \mathbb{N}, 1 < q < \infty}$ and ${G \subset \mathbb{R}^n}$ is a bounded domain with sufficiently smooth boundary. As an application, we get a very simple and effective method of treating higher order generalizations of Stokes’ system.  相似文献   

14.
Due to the results of Lewowicz and Tolosa expansivity can be characterized with the aid of Lyapunov function. In this paper we study a similar problem for uniform expansivity and show that it can be described using generalized cone-fields on metric spaces. We say that a function \(f:X\rightarrow X\) is uniformly expansive on a set \(\varLambda \subset X\) if there exist \(\varepsilon >0\) and \(\alpha \in (0,1)\) such that for any two orbits \(\hbox {x}:\{-N,\ldots ,N\} \rightarrow \varLambda \) , \(\hbox {v}:\{-N,\ldots ,N\} \rightarrow X\) of \(f\) we have $$\begin{aligned} \sup _{-N\le n\le N}d(\hbox {x}_n,\hbox {v}_n) \le \varepsilon \implies d(\hbox {x}_0,\hbox {v}_0) \le \alpha \sup _{-N\le n\le N}d(\hbox {x}_n,\hbox {v}_n). \end{aligned}$$ It occurs that a function is uniformly expansive iff there exists a generalized cone-field on \(X\) such that \(f\) is cone-hyperbolic.  相似文献   

15.
The permeability of coalbed methane reservoirs may evolve during the recovery of methane and injection of gas, due to the change of effective stress and gas adsorption and desorption. Experimental and numerical studies were conducted to investigate the sorption-induced permeability change of coal. This paper presents the numerical modeling part of the work. It was found that adsorption of pure gases on coal was well represented by parametric adsorption isotherm models in the literature. Based on the experimental data of this study, adsorption of pure \(\hbox {N}_2\) was modeled using the Langmuir equation, and adsorption of pure \(\hbox {CO}_2\) was well represented by the N-Layer BET equation. For the modeling of CO \(_2\) & N \(_2\) binary mixture adsorption, the ideal adsorbed solution (IAS) model and the real adsorbed solution (RAS) model were used. The IAS model estimated the total amount of mixture adsorption and the composition of the adsorbed phase based on the pure adsorption isotherms. The estimated total adsorption and adsorbed-phase composition were very different from the experimental results, indicating nonideality of the CO \(_2\) –N \(_2\) –Coal-adsorption system. The measured sorption-induced strain was linearly proportional to the total amount of adsorption despite the species of the adsorbed gas. Permeability reduction followed a linear correlation with the volumetric strain with the adsorption of pure \(\hbox {N}_2\) and the tested CO \(_2\) & N \(_2\) binary mixtures, and an exponential correlation with the adsorption of pure \(\hbox {CO}_2\) .  相似文献   

16.
An analytical solution is presented for the boundary-layer flow and heat transfer over a permeable stretching/shrinking surface embedded in a porous medium using the Brinkman model. The problem is seen to be characterized by the Prandtl number $Pr$ , a mass flux parameter $s$ , with $s>0$ for suction, $s=0$ for an impermeable surface, and $s<0$ for blowing, a viscosity ratio parameter $M$ , the porous medium parameter $\Lambda $ and a wall velocity parameter $\lambda $ . The analytical solution identifies critical values which agree with those previously determined numerically (Bachok et al. Proceedings of the fifth International Conference on Applications of Porous Media, 2013) and shows that these critical values, and the consequent dual solutions, can arise only when there is suction through the wall, $s>0$ .  相似文献   

17.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

18.
Michele Caputo 《Meccanica》2014,49(9):2237-2246
We consider a model for the evolutions of \(m>2\) economies \(y_{i}(t),\) where we assume that their interaction is based on the differences of the values of their evolution status. Since the economies have structures which cause delays, we introduce in the equations a mathematical memory formalism represented by a derivative of fractional order which leads to a system of integro-differential equations. The solution is obtained from a set of \(m\) linear equations in the Laplace Transform (LT) of the \(y_{i}(t)\) . Differently from a previous note Caputo (Non Linear Dyn Econ 16:2–22, 2012), in the present one each economy is affected by a different memory. Is found that the asymptotic values of the state of evolutions of the economies are all equal to the initial value of the economy which has the memory represented by a fractional derivative of order smaller than the others. A method for the definition and estimate of the measure of economies and their comparison is also presented and applied to study the homogeneities of 5 EU economies with an estimate of fields, where they are inhomogeneous.  相似文献   

19.
We introduce the topological pressure for any sub-additive and asymptotically sub-additive potentials of $\mathbb{Z }^d$ -actions, and establish the variational principle for them.  相似文献   

20.
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation \(\left\langle l \right\rangle \propto \varepsilon ^{-1/2}\) , where \(\varepsilon \) is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases \(\left\langle l \right\rangle \) can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号