首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The response of a granular material during a stop-and-go shear experiment is investigated using an annular shear cell and silicagel powders of different particle sizes. The experimental results are examined on the basis of the Dieterich-Rice-Ruina model for solid friction. In addition to making this analogy with solid friction, we describe a new instability that is observed when restarting shear, where the powder bed is found to slip and compact for short hold times but only dilates for long hold times. The minimum hold time to restore a non-slip behaviour has been investigated for different size particles and normal loadings. The observed dependencies show analogies between this behaviour and the sliding rearrangements seen above the stick-slip threshold.  相似文献   

2.
The formation of granular ripples under liquid shear flow in an annular channel is studied experimentally. The erodible granular bed is subject to weakly turbulent flows without a defined sharp boundary layer close to the granular bed. The flow field and the degree of turbulence is characterized quantitatively by using a particle image velocimeter and a laser-Doppler velocimeter, respectively. A new range of particle Reynolds numbers at the lower limit of the Shields diagram were explored. Quantitative measurements of the granular flow on the surface reveal that the threshold for particle motion coincides within the order of one percent with the threshold for ripple formation. In fully developed ripples it was found that on the leeward side of the ripples regions of low-velocity gradients exist where granular motion is scarce, indicating that the coupling between the ripples is mainly caused by the flow field of the liquid.  相似文献   

3.
Dispersive flow of disks through a two-dimensional Galton board   总被引:1,自引:0,他引:1  
We report here an experimental and numerical study of the flow properties of disks driven by gravity through a hexagonal lattice of obstacles, i.e. a Galton board. During the fall, particles experience dissipative collisions that scatter them in random directions. A driven-diffusion regime can be achieved under certain conditions. A characteristic length of the motion and its dependence on geometrical parameters of the system is analyzed in the steady regime. The influence of collective effects on the dispersion process is investigated by comparison between single- and many-particle flows. The characterization of the dynamics and the diffusive properties of the flow in a system like a Galton board can be expanded to other granular systems, particularly static solid particle mixers and will give some insight in understanding granular mixing.  相似文献   

4.
We report a novel transition to core precession for granular flows in a split-bottomed shear cell. This transition is related to a qualitative change in the 3D flow structure: For shallow layers of granular material, the shear zones emanating from the split reach the free surface, while for deep layers the shear zones meet below the surface, causing precession. The surface velocities reflect this transition by a change of symmetry. As a function of layer depth, we find that three qualitatively different smooth and robust granular flows can be created in this simple shearing geometry.  相似文献   

5.
We present the generalization of a theoretical model for segregation of granular mixtures due to surface flows, published in J. Phys. I France 6, 1295 (1996). Our generalized model is valid for grains differing by their size and/or their surface properties; in the present paper, we describe the case of two species with the same surface properties but two different sizes. The rolling stream is assumed to be homogeneous. Exchanges between the grains at rest and the rolling stream are modelized via binary collisions. The model predicts that during the filling of a two-dimensional silo, continuous segregation appears inside the static phase: small (respectively large) grains tend to stop uphill (respectively downhill), although both species remain present everywhere. This fits the observations when the size difference between the species is small. When the size difference is large, a different regime is observed. We argue that in this case, segregation occurs directly inside the rolling stream. Received: 25 February 1998 / Received in final form and Accepted: 6 July 1998  相似文献   

6.
This paper presents numerical findings on rapid 2D and 3D granular flows on a bumpy base. In the supported regime studied here, a strongly sheared, dilute and agitated layer spontaneously appears at the base of the flow and supports a compact packing of grains moving as a whole. In this regime, the flow behaves like a sliding block on the bumpy base. In particular, for flows on a horizontal base, the average velocity decreases linearly in time and the average kinetic energy decreases linearly with the travelled distance, those features being characteristic of solid-like friction. This allows us to define and measure an effective friction coefficient, which is independent of the mass and velocity of the flow. This coefficient only loosely depends on the value of the micromechanical friction coefficient whereas the infuence of the bumpiness of the base is strong. We give evidence that this dilute and agitated layer does not result in significantly less friction. Finally, we show that a steady regime of supported flows can exist on inclines whose angle is carefully chosen.  相似文献   

7.
General conservation equations are derived for 2D dense granular flows from the Euler equation within the Boussinesq approximation. In steady flows, the 2D fields of granular temperature, vorticity and stream function are shown to be encoded in two scalar functions only. We checked such prediction on steady surface flows in a rotating drum simulated through the Non-Smooth Contact Dynamics method even though granular flows are dissipative and therefore not necessarily compatible with Euler equation. Finally, we briefly discuss some possible ways to predict theoretically these two functions using statistical mechanics.  相似文献   

8.
Conservation equations are written for surface flows (either fluid or granular). The particularity of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed, leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing depth, as in shallow water theory, then allows to transform these conservation laws into equations for the evolution of the profile of a granular pile. Apart from their interest for building models, these conservation laws can be used to measure experimentally the effective forces acting on a flowing layer. Received 25 July 1998 and Received in final form 14 January 1999  相似文献   

9.
We present experiments on slow granular flows in a modified (split-bottomed) Couette geometry in which wide and tunable shear zones are created away from the sidewalls. For increasing layer heights, the zones grow wider (apparently without bound) and evolve towards the inner cylinder according to a simple, particle-independent scaling law. After rescaling, the velocity profiles across the zones fall onto a universal master curve given by an error function. We study the shear zones also inside the material as a function of both their local height and the total layer height.  相似文献   

10.
Chuen-Shii Chou   《Physica A》2001,290(3-4)
By extending the constitutive theories for homogeneous granular flows of highly inelastic spheres by Richman (J. Rheol 33 (1989) 1293), Chou (J. CSME 16-6 (1995) 577), and Chou and Richman (Physica A 259 (1998) 430), the collisional source of the second moment of fluctuation velocity and pressure tensor were developed in this study for inhomogeneous rapid granular flows of identical smooth highly inelastic spheres. The important mean fields in this flow are the solid fraction, mean velocity, and full second moment of fluctuation velocity. The collisional source of second moment and the collisional flux of momentum are based upon an anisotropic Maxwellian velocity distribution function. The constitutive theory was combined with the experimental results measured by Hsiau and Jang (Exp. Thermal Fluid Sci. 17 (1998) 202) so as to determine the profiles of pressure tensor and collision source of second moment in the inhomogeneous rapid granular shear flows of inelastic spheres. The normal pressure discrepancies were also observed.  相似文献   

11.
We study strain localization in slow shear flow focusing on layered granular materials. A heretofore unknown effect is presented here. We show that shear zones are refracted at material interfaces in analogy with refraction of light beams in optics. This phenomenon can be obtained as a consequence of a recent variational model of shear zones. The predictions of the model are tested and confirmed by 3D discrete element simulations. We found that shear zones follow Snell's law of light refraction.  相似文献   

12.
Summary We present a simple phenomenological model, based on mass conservation arguments, in order to describe aggregation in dense solutions. It has been previously shown that fordiffusion-limited processes scattered intensity distributions exhibit a peak atq≠0 which grows in time and moves to smaller and smallerq vectors. According to the model, each aggregate is surrounded by a depletion region whose size depends on the aggregation kinetics. The form factor for such a cluster should satisfy local mass conservation and hence exhibit a pronounced depression atq=0. the initial stages of aggregation, when the clusters are far apart, are accounted on the basis of a form factor alone. The model shows good agreement with the data and also explains the experimental evidence that the peak does not appear inreaction-limited conditions. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

13.
We report sets of precise and reproducible measurements on the static pressure at the bottom of a granular column. We make a quantitative analysis of the pressure saturation when the column height is increased. We evidence a great sensitivity of the measurements with the global packing fraction and the eventual presence of shear bands at the boundaries. We also show the limit of the classical Janssen model and discuss these experimental results under the scope of recently proposed theoretical frameworks. Received 7 September 1998 and Received in final form 28 January 1999  相似文献   

14.
We present the generalization of the minimal model for surface flows of granular mixtures, proposed by Boutreux and de Gennes [J. Phys. I France 6, 1295 (1996)]. The minimal model was valid for grains differing only in their surface properties. The present model also takes into account differences in the size of the grains. We apply the model to study segregation in two-dimensional silos of mixtures of grains differing in size and/or surface properties. When the difference in size is small, the model predicts that a continuous segregation appears in the static phase during the filling of a silo. When the difference in size is wide, we take into account the segregation of the grains in the rolling phase, and the model predicts complete segregation and stratification in agreement with experimental observations. Received 9 September 1998 and Received in final form 4 November 1998  相似文献   

15.
We introduce a simple model to describe the frictional properties of granular media under shear. We model the friction force in terms of the horizontal velocity and the vertical position z of the slider, interpreting z as a constitutive variable characterizing the contact. Dilatancy is shown to play an essential role in the dynamics, inducing a stick-slip instability at low velocity. We compute the phase diagram, analyze numerically the model for a wide range of parameters and compare our results with experiments on dry and wet granular media, obtaining a good agreement. In particular, we reproduce the hysteretic velocity dependence of the frictional force. Received 16 November 1999  相似文献   

16.
Recent studies have pointed out the importance of the basal friction on the dynamics of granular flows. We present experimental results on the influence of the roughness of the inclined plane on the dynamics of a monodisperse dry granular flow. We found experimentally that there exists a maximum of the friction for a given relative roughness. This maximum is shown to be independent of the slope angle. This behavior is observed for four planes with different bump sizes (given by the size of the beads glued on the plane) from 200 m to 2 mm. The relative roughness corresponding to the maximum of the friction can be predicted with a geometrical model of stability of one single bead on the plane. The main parameters are the size of the bumps and the size of the flowing beads. In order to obtain a higher precision, the model also takes into account the spacing between the bumps of the rough plane. Experimental results and model are in good agreement for all the planes we studied. Other parameters, like the sphericity of the beads, or irregularities in the thickness of the layer of glued particles, are shown to be of influence on the friction.  相似文献   

17.
Humidity is well-known to significantly affect the mechanical properties, static as well as dynamic, of granular materials. We present the method of humidification of granular media from an under-saturated vapor that we designed in order to experimentally quantify such moisture-induced effects under accurately-controlled humidity conditions. We report the quantitative measurements of the maximum angle of stability of a pile made of small glass beads, as a function of the relative vapor pressure, up to close to saturation. The results obtained with liquids differing in their wetting properties on glass, namely water and heptane, are presented. It is shown that the wetting properties of the liquid on the grains have a strong influence on the cohesion of the non-saturated granular medium. Received 26 October 1998 and Received in final form 30 March 1999  相似文献   

18.
Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised.  相似文献   

19.
A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.  相似文献   

20.
Daniel Lhuillier 《Physica A》2007,383(2):267-275
The micropolar model is a continuum-mechanical model suited to describe a collection of particles interacting via forces and couples. When applied to dense granular liquids that model must display some specific features because of the peculiarities of the frictional forces. We want here to stress on some of those specific features including the existence of two kinds of fluctuating kinetic energies (for translation and rotation), their evolution equations in which enters the mean dissipation rate, and how an estimation (or numerical calculation) of the dissipation rate can lead to the constitutive laws of dense granular liquids in steady flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号