首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase transitions occuring in a quasi-one-dimensional organic compound (TMTSF)2PF6 near the boundaries between the paramagnetic metallic (PM), antiferromagnetic insulator (AFI), and superconducting (SC) states were studied experimentally. A controlled transition through the phase boundary was achieved by maintaining the sample at fixed temperature T and pressure P, while the critical pressure was tuned by varying a magnetic field B. When the PM/AFI phase boundary was crossed due to the variation of a magnetic field, history effects were observed: the resistance was found to depend on the trajectory described by the system before arriving at a given point (P-B-T) of the phase space. The results of the experiment give evidence for the formation of a macroscopically inhomogeneous state characterized by the inclusions of a minor phase that is spatially separated from the major phase. Away from the phase boundary, the homogeneous state is restored. After this, upon approaching the phase boundary in the back direction, the system exhibits no features of the minor phase up to the very boundary.  相似文献   

2.
Exchange biasing was studied in an exchange-spring system consisting of two ferrimagnetic films with different coercivity. Magnetite and Co-Fe ferrite were chosen as the soft and hard magnetic bilayer components, respectively. The samples were epitaxially grown on MgO single crystal substrates by pulsed laser deposition. The exchange-bias field was investigated as a function of system size and shape, magnetic field direction and magnetization reversal in the hard layer. A clear dependence of the exchange-bias field on the sample size and shape was found. This was attributed to an interplay between exchange and dipolar energies. Micromagnetic simulations agree with the experimental results.  相似文献   

3.
We examine an unusual phenomenon where, in tilted magnetic fields near magic angles parallel to crystallographic planes, a "giant" resonant Nernst signal has been observed by Wu et al. [Phys. Rev. Lett. 91, 056601 (2003)] in the metallic state of an organic conducting Bechgaard salt. We show that this effect appears to be a general feature of these materials and is also present in the field-induced spin density wave phase with even larger amplitude. Our results place conditions on any model that treats the metallic state as a state with finite Cooper pairing.  相似文献   

4.
5.
The phase diagram of the organic superconductor (TMTSF)2PF6has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T SDW and T SC and the superconducting critical current. The onset temperature T SC is practically constant ( 1.20±0.01 K) in this region where only the SC/SDW domain proportion below T SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings. Received 3 September 2001 and Received in final form 9 November 2001  相似文献   

6.
7.
A. G. Lebed 《JETP Letters》2011,94(5):382-385
We suggest explanation of the high upper critical magnetic field, perpendicular to conducting chains and parallel to conducting layers H c2 b′ ≃ 6 T, experimentally observed in the organic superconductor (TMTSF)2ClO4. In particular, we show that H c2 b′ can be higher than both the quasiclassical upper critical field and Clogston-Chandrasekhar paramagnetic limit in a singlet quasi-one-dimensional superconductor. We predict the coexistence of the hidden Reentrant and Larkin-Ovchinnikov-Fulde-Ferrell phases in a magnetic field. Our results are compared to the recent experimental data and shown to be in a good agreement with the experiments.  相似文献   

8.
We present measurements of the infrared response of the quasi-one-dimensional organic conductor (TMTSF)2FSO3 along (E ) and perpendicular (E ) to the stacking axis as a function of temperature. Above the metal-insulator transition related to the anion ordering the optical conductivity spectra show a Drude-like response. Below the transition an energy gap of about 1500 cm-1 (185 meV) opens, leading to the corresponding charge transfer band in the optical conductivity spectra. The analysis of the infrared-active vibrations gives evidence for the long-range crystal structure modulation below the transition temperature and for the short-range order fluctuations of the lattice modulation above the transition temperature. We also report about a new infrared mode at around 710 cm-1 with a peculiar temperature behavior, which has so far not been observed in any other (TMTSF)2X salt showing a metal-insulator transition. A qualitative model based on the coupling between the TMTSF molecule vibration and the reorientation of electrical dipole moment of the FSO3 anion is proposed, in order to explain the anomalous behavior of this new mode.  相似文献   

9.
10.
We have investigated the effect of the magnetic field (B) on the very low-temperature equilibrium heat capacity ceq of the quasi-1 D organic compound (TMTTF)2Br, characterized by a commensurate Spin Density Wave (SDW) ground state. Below 1 K, ceq is dominated by a Schottky-like AST-2 contribution, very sensitive to the experimental time scale, a property that we have previously measured in numerous DW compounds. Under applied field (in the range 0.2–7 T), the equilibrium dynamics, and hence ceq extracted from the time constant, increases enormously. For B ≥ 2–3 T, ceq varies like B2, in agreement with a magnetic Zeeman coupling. Another specific property, common to other Charge/Spin density wave (DW) compounds, is the occurrence of metastable branches in ceq, induced at very low temperature by the field exceeding a critical value. These effects are discussed within a generalization to SDWs in a magnetic field of the available Larkin-Ovchinnikov local model of strong pinning. A limitation of the model when compared to experiments is pointed out.  相似文献   

11.
A. G. Lebed 《JETP Letters》2012,94(9):689-692
We theoretically determine the Ginzburg-Landau slopes of the anisotropic upper critical magnetic field in a quasi-one-dimensional superconductor and correct the previous works on this issue. By using the experimentally measured values of the Ginzburg-Landau slopes in the superconductor (TMTSF)ClO4, we determine band parameters of its electron spectrum. Our main result is that the so-called quantum dimensional crossover has to happen in this material in magnetic fields, H = 3–8 T, which are much lower than the previously assumed. We discuss how this fact influences metallic and superconducting properties of the (TMTSF)2ClO4.  相似文献   

12.
Lithium ionic conductivity and spin-lattice relaxation rates were measured in Li8ZrO6 and Li6Zr2O7 solid electrolytes. It was found that the Li8ZrO6 solid electrolyte undergoes a transition to the superionic state in the temperature range 673–703 K. It was shown that Li+ ions are mobile in particular lattice positions of the Li6Zr2O7 phase, and that ionic conductivity is monotonic at an activation energy of 79.4 kJ/mol.  相似文献   

13.
Effects of a mechanical shear on the electron transport properties of a (LaMnO3)2/(SrMnO3)2 superlattice are investigated using first-principle DFT calculations. While the unstrained superlattice is a 3-D conducting half metal, application of a pyramidal shear transforms it into a non-spin-polarized conductor. Depending on whether the out-of-plane component of the shear is tensile or compressive the conductivity is 1-D out-of-plane or 2-D in-plane. The shear-induced low-dimensional conductivity is also associated with the FM-AFM transition.  相似文献   

14.
Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selection rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.  相似文献   

15.
We apply, for the first time to our knowledge, photorefractive grating spectroscopy to obtain not-yet-known data on the anisotropy of the dielectric permittivity of Sn2P2S6. Two independent techniques are used, one based on measurements of the amplitude of the space-charge field grating as a function of grating spacing and the other based on measurements of the grating decay time, also as a function of grating spacing. Both techniques provide close values for the anisotropy, which appears to be well pronounced, a ratio εxxzz≈4 is revealed for two of the three independent components of the dielectric tensor. Our data also allow us to conclude that the charge mobility is nearly isotropic in the same plane, μxxzz≈1. Received: 2 December 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +380-44/265-2359, E-mail: odoulov@iop.kiev.ua  相似文献   

16.
In this work we report results on electro-physical, optical and photorefractive investigations for Sb-doped Sn2P2S6 crystals. The crystals are obtained by two methods: the vapour-transport technique and the Bridgman technique using stoichiometric Sn2P2S6 composition with different amounts of antimony in the initial compound. The good optical quality of the crystals obtained with the Bridgman technique is underlined. The dependences of the photorefractive two-beam coupling coefficient and the grating build-up time are investigated at the wavelength of 633 nm. It is found that the sample doped with 1.5% of Sb is characterized by an optimal combination of the main photorefractive parameters exhibiting a fairly high two-beam coupling coefficient (up to 20 cm−1) and a short response time (1.3 ms) that is the shortest among all the previously studied Sn2P2S6 crystals in the red spectral region.  相似文献   

17.
18.
We analyze measurements of the magnetization, differential susceptibility and specific heat of quasi-onedimensional insulator Cu(C4H4N2)(NO3)2 (CuPzN) subjected to magnetic fields. We show that the thermodynamic properties are defined by quantum spin liquid formed with spinons, with the magnetic field tuning the insulator CuPzN towards quantum critical point related to fermion condensation quantum phase transition (FCQPT) at which the spinon effective mass diverges kinematically. We show that the FCQPT concept permits to reveal and explain the scaling behavior of thermodynamic characteristics. For the first time, we construct the schematic T–H (temperature-magnetic field) phase diagram of CuPzN that contains Landau–Fermi-liquid, crossover and non-Fermi liquid parts, thus resembling that of heavy-fermion compounds.  相似文献   

19.
Polymer composite comprising polyvinylidene fluoride (PVDF) and potassium hexatitante (K2Ti6O13) was synthesized by solution casting. The effect of K2Ti6O13 on surface, thermal, and electrical properties of polymer composite were investigated. The addition of K2Ti6O13 with polymer leads to thermal degradation and transition of polymer composite from semi-crystalline to amorphous phase. The optimum results of contact angle for different loading wt% of K2Ti6O13 were directly correlated with the surface morphology. Our experimental results confirmed the incorporation of K2Ti6O13 in polymer by SEM micrographs. The evaluated dielectric properties (ε' = 424; tan δ = 2.14 at 130 °C and 100 Hz frequency for 20 wt% loading of K2Ti6O13) for polymer composite are higher in compared to pure polymer. The enhancement in dielectric constant and changing the surface properties of polymer composite can be used for the development of electrochemical storage device applications.  相似文献   

20.
This paper reports on the results of measurements of the magnetic susceptibility, heat capacity, neutron scattering, muon spin relaxation, and electron paramagnetic resonance in Cu3B2O6 for the study of the ground state of the spin system of this compound. The results obtained suggest that, at a temperature of 10 K, the spin subsystem of the crystal, which consists of single spins and clusters of pairs and fours of spins interacting with one another, undergoes a transition to a state representing a superposition of the singlet (for clusters) and magnetically ordered (for single spins) states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号