首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bottom-up construction and operation of nanoscale machines and motors, that is, supramolecular systems wherein the molecular components can be set in motion in a controlled manner for ultimately accomplishing a function, is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The field of artificial molecular machines and motors is growing at an astonishing rate and is attracting a great deal of interest. Research in the last decade has shown that species made of interlocked molecular components like rotaxanes, catenanes and related systems are most attractive candidates. In recent times, the evolution of the structural and functional design of such systems has led to the construction and operation of complex molecular machines that, in some cases, are able to do specific tasks. This tutorial review is intended to discuss the design principles for nanomachines based on interlocked molecules, and to provide a timely overview on representative prototype systems.  相似文献   

2.
A mini-review: As the top-down approach for miniaturisation of technology reaches its inherent limitations, robust strategies to build nanoscale machinery components, which have the ability to convert an input energy into motion, from the molecular level up, become increasingly important. Nature is certainly the most proficient in the control of molecular level motion; nevertheless, many successes have been enjoyed in the pursuit of mimicking key aspects of nature’s molecular machines, including two state switches, ion pumps, unidirectional rotary motors and molecular robots that can move molecular cargo. This mini-review outlines of some of the most impressive recent examples towards this end.  相似文献   

3.
《Progress in Surface Science》2007,82(7-8):407-434
Recent advances in synthetic methods and analysis techniques provide a basis for the construction and characterization of organized arrays of molecular switches and motors on surfaces. Among them, molecular systems that can be controlled by light are particularly promising because of their ease of addressability, fast response times and the compatibility of light with a wide range of condensed phases. The aim of this contribution is to highlight selected recent advances in building functional monolayers of light-activated molecules. Special focus is given to monolayers of molecules whose collective switching properties have been harnessed to produce macroscopic effects. The design, structure, and function of monolayers composed of bistable photochromic switches, which can control chirality, wettability, conductivity and self-assembly are described. A recent report on the successful demonstration of light-driven rotary motors functioning while grafted on gold surfaces will also be discussed, followed by a brief conclusion.  相似文献   

4.
"Molecular motors or machines" are one of the hot subjects in chemistry because they play an important role in molecular devices. We have theoretically demonstrated that unidirectional rotations of a chiral molecular motor can be driven by using tailored linearly polarized laser pulses. The findings obtained here serve as a theoretical basis for control of functions such as gearing or acceleration of molecular motors.  相似文献   

5.
Transition metal-containing catenanes and rotaxanes are ideally suited to build molecular machines and motors; in the present review article, three examples from our group are discussed which consist of (i) a fast-moving electrochemically-driven pirouetting machine, (ii) a linear rotaxane dimer whose behaviour is reminiscent of muscles, in the sense that it can be stretched or contracted and (iii) a light-driven machine consisting of a catenane constructed around a ruthenium(II) centre.  相似文献   

6.
Inspired by human vision, a diverse range of light-driven molecular switches and motors have been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc. The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.  相似文献   

7.
Molecular switches that can undergo reversible switching between two or more different states in response to external stimuli have been used in the fabrication of various optoelectronic devices and smart materials for many decades, and also found many applications in sensing, molecular self-assembly and photo-controlled biological systems. Recently, mechanically interlocked molecules, such as rotaxanes and catenanes, and molecular rotary motors based on overcrowded alkenes have emerged as two new kinds of molecular switches. Some novel applications of above-mentioned molecular switches have been discovered. In this mini review, we mainly highlight noticeable achievements over the past decade in this field, and summarize the applications of new types of molecular switches, for instance, controlling the chiral space to regulate catalytic reaction as organocatalysts, controlling molecular motions, synthesizing a peptide in a sequence-specific manner and modulating the wettability of the self-assembled monolayers.  相似文献   

8.
A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.  相似文献   

9.
The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial. Maximising efficiency without compromising function requires conscious and judicious selection of the structures used. In this perspective, we focus on the key aspects of motor design and discuss how to manipulate these properties without impeding motor integrity. Herein, we describe these principles in the context of molecular rotary motors featuring a central double bond axle and emphasise the strengths and weaknesses of each design, providing a comprehensive evaluation of all artificial light-driven rotary motor scaffolds currently present in the literature. Based on this discussion, we will explore the trajectory of research into the field of molecular motors in the coming years, including challenges to be addressed, potential applications, and future prospects.

Various families of light-driven rotary molecular motors and the key aspects of motor design are discussed. Comparisons are made between the strengths and weaknesses of each motor. Challenges, applications, and future prospects are explored.  相似文献   

10.
An artificial molecular machine consists of molecule or substituent components jointed together in a specific way so that their mutual displacements could be initiated using appropriate outside stimuli. Such an ability of performing mechanical motions by consuming external energy has endowed these tiny machines with vast fascinating potential applications in areas such as actuators, manipulating atoms/molecules, drug delivery, molecular electronic devices, etc. To date, although vast kinds of molecular machine archetypes have been synthesized in facile ways, they are inclined to be defined as switches but not true machines in most cases because no useful work has been done during a working cycle. More efforts need to be devoted on the utilization and amplification of the nanoscale mechanical motions among synthetic molecular machines to accomplish useful tasks. Here we highlight some of the recent advances relating to molecular machines that can perform work on different length scales, ranging from microscopic levels to macroscopic ones.  相似文献   

11.
分子梭在分子开关、分子逻辑门、信息存储等领域有着潜在的应用价值,是超分子化学领域的研究热点之一。本文综述了光驱动分子梭的研究进展:重点举例介绍了荧光光谱识别法和圆二色光谱识别法这两种识别光驱动分子梭位置状态的方法;阐述了构建光驱动轮烷分子梭的新型方法学,包括光驱动环糊精[2]轮烷和[1]轮烷分子梭的定向合成,举例介绍了光间接驱动的轮烷分子梭,以及光驱动[3]轮烷型分子梭和分子梭聚合物;举例说明了光驱动分子梭的功能性应用,用光驱动分子梭来模拟分子水平的逻辑门,研究光驱动分子梭体系中的能量传递机理,以及非溶液态的光驱动分子梭;并对分子梭今后的发展做了展望。  相似文献   

12.
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out‐of‐equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off‐equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel‐driven off‐equilibrium molecular switches and machines.  相似文献   

13.
Molecular switches, rotors, and motors play an important role in the development of nano‐machines and devices, as well as responsive and adaptive functional materials. For unidirectional rotors based on chiral overcrowded alkenes, their stereochemical homogeneity is of crucial importance. Herein, a method to obtain new and functionalizable overcrowded alkenes in enantiopure form is presented. The procedure involves a short synthesis of three steps and a solvent‐switchable chiral resolution by using a readily available resolving agent. X‐ray crystallography revealed the mode of binding of the motor with the resolving agent, as well as the absolute configuration of the motor. 1H NMR and UV/Vis spectroscopy techniques were used to determine the dynamic behavior of this molecular motor. This method provides rapid access to ample amounts of enantiopure molecular motors, which will greatly facilitate the further development of responsive molecular systems based on chiral overcrowded alkenes.  相似文献   

14.
The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the “all‐or‐nothing” effect, which turns a molecular “speed‐bump” into a stopper in pseudorotaxane‐based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown‐8 ether, with a joint experimental–computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic features.  相似文献   

15.
The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of molecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories.   相似文献   

16.
Ferrocene, a double-decker organometallic compound that generates angular motion, can be used as a unique rotary module for molecular machines. By interlocking a ferrocene-based rotary module with a photochromic unit, we have developed novel molecular machines that operate via power-conversion mechanisms. This design strategy, which mimics real machines in our daily life, allows for remote control of molecular events.  相似文献   

17.
In this critical review, we discuss switching of the light-powered bistable rotaxanes and catenanes and highlight the practical applications of some of these systems. Photoactive molecular and supramolecular machines are comprised of two parts-1) a switching element, based on noncovalent interactions within the recognition units, which is responsible for executing mechanical movement, and 2) a light-harvesting unit which utilizes light to control the competitive interactions between the recognition sites. We also survey another class of molecular devices, namely molecular rotary motors--i.e., those that behave like their macroscopic counterparts--in which photochemically and thermally induced mechanical movement relies on isomerizations of a pivotal C=C bond, leading to a rotation of the top propeller part with respect to the stationary bottom part of the helical shaped chiral molecule. (146 references.).  相似文献   

18.
Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the basis of an overcrowded alkene, and their dynamics were systematically studied by 2D EXSY NMR. Variation of the (hetero-)atoms in the upper and lower halves of the overcrowded alkene allows fine tuning of the rate of rotation of the o-xylyl rotor in the lower half of the molecule. For all rotors it was observed that the rotation barrier for the trans-isomer was higher than that of the corresponding cis-isomer. The results are analyzed and discussed in terms of differences in steric interactions in the presented system.  相似文献   

19.
20.
In the growing research area on molecular machinery, light is one of the attractive and useful stimuli source to operate synthetic molecular machines, since light allows selective operation of photoresponsive moieties without additives. We have proposed a new approach to design of photoresponsive molecular machines by interlocking mechanical motions between photoresponsive and movable units through covalent and non-covalent bonds. This approach is inspired by biological molecular machines consisting of multiple protein subunits, and potentially useful for construction of giant mechanical systems. In this review, we will introduce our concepts of the molecular design with several successful examples as well as their applications for controlling chemical events, and also glance at a semi-biological molecular machine controllable by light, which reveals a potential of biological systems for development of elaborate molecular devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号