首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用电化学氧化的方法制备了水溶性好、粒径为7~12nm的碳纳米粒子,该碳纳米粒子通过π-π相互作用吸附荧光标记的单链DNA探针,并能有效地猝灭其荧光.当单链DNA探针与匹配的DNA目标分子杂交形成双链DNA时,猝灭的荧光被恢复,由此可以检测1-200nmol/L的DNA目标分子。此外,在碳纳米粒子存在时,由荧光标记的DNA探针和DNA目标分子形成的双链DNA的熔解温度可以简便地被测定,当双链DNA有错配碱基时,其熔解温度降低,由此可方便、快速地分析单核苷酸多态性.  相似文献   

2.
Characterization of single- and double-stranded DNA on gold surfaces   总被引:2,自引:0,他引:2  
Single- and double-stranded deoxy ribonucleic acid (DNA) molecules attached to self-assembled monolayers (SAMs) on gold surfaces were characterized by a number of optical and electronic spectroscopic techniques. The DNA-modified gold surfaces were prepared through the self-assembly of 6-mercapto-1-hexanol and 5'-C(6)H(12)SH -modified single-stranded DNA (ssDNA). Upon hybridization of the surface-bound probe ssDNA with its complimentary target, formation of double-stranded DNA (dsDNA) on the gold surface is observed and in a competing process, probe ssDNA is desorbed from the gold surface. The competition between hybridization of ssDNA with its complimentary target and ssDNA probe desorption from the gold surface has been investigated in this paper using X-ray photoelectron spectroscopy, chronocoulometry, fluorescence, and polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The formation of dsDNA on the surface was identified by PM-IRRAS by a dsDNA IR signature at approximately 1678 cm(-)(1) that was confirmed by density functional theory calculations of the nucleotides and the nucleotides' base pairs. The presence of dsDNA through the specific DNA hybridization was additionally confirmed by atomic force microscopy through colloidal gold nanoparticle labeling of the target ssDNA. Using these methods, strand loss was observed even for DNA hybridization performed at 25 degrees C for the DNA monolayers studied here consisting of attachment to the gold surfaces by single Au-S bonds. This finding has significant consequence for the application of SAM technology in the detection of oligonucleotide hybridization on gold surfaces.  相似文献   

3.
o-Phthalaldehyde-beta-mercaptoethanol (OPAME) as a fluorogenic reagent has been found wide applications in the detection of amino acids based on its reaction with primary amino groups. In this contribution, we report our new findings concerning the reactions of OPAME with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), respectively. It has been found that ssDNA can react with OPAME easily as a result of giving rise to strong fluorescence emissions, while dsDNA, prepared by hybridizing ssDNA with its complementary target prior to the reaction, displays inert chemical activity and gives out weak fluorescence emission. Mechanism investigations have shown that the reaction activity between OPAME and DNA depends on the amino groups that are related to the conformation of uncoiled and exposed extent of DNA structure, and thus the inert chemical activity of dsDNA results from screening of the dsDNA bases in the interior of the double strands. Therefore, we could design a way to detect conformation change of DNA with OPAME and further develop a novel, simple label-free sequence detection method for complementary and single-base mismatched ssDNA in the hybridization of DNA.  相似文献   

4.
《Analytical letters》2012,45(16):2334-2343
A new method of fluorescence spectrometry detection of single-strand DNA (ssDNA) was established by hybridizing the ssDNA with its complementary ssDNA to form double-stranded DNA (dsDNA). Our results show that the fluorescence intensity increased significantly when the nucleic acid molecular “light switch"(Ru(phen)2dppx2+) or Hoechst 33258 dye interacted with dsDNA, and the fluorescence intensity also increased as the DNA concentration increased. The changing law was also studied about how the fluorescence intensity changed when the two kinds of fluorescent probes interacted with oligonucleotide of different lengths and different sequences, as well as DNA-DNA′ hybridization products. Then, the effect of the bases mismatch, varying length of DNA chain, and different DNA sequences on the fluorescence intensity were explored at the same time, by detecting the specific DNA sequence of avian influenza H1N1 virus, cauliflower mosaic virus, and hepatitis C virus. Additionally, the selectivity, linear range, and sensitivity of the two probes were compared.  相似文献   

5.
Nanoparticles as a progressively developing branch offer a tool for studying the interaction of carbon quantum dots (CQDs) with DNA. In this study, fluorescent CQDs were synthesized using citric acid covered with polyethylene glycol (PEG) as the source of carbon precursors. Furthermore, interactions between CQDs and DNA (double-stranded DNA and single-stranded DNA) were investigated by spectral methods, gel electrophoresis, and electrochemical analysis. Primarily, the fluorescent behavior of CQDs in the presence of DNA was monitored and major differences in the interaction of CQDs with tested single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) were observed at different amounts of CQDs (µg mL?1: 25, 50, 100, 250, 500). It was found that the interaction of ssDNA with CQDs had no significant influence on the CQDs fluorescence intensity measured at the excitation wavelengths of 280 nm, 350 nm, and 400 nm. However, in the presence of dsDNA, the fluorescence intensity of CQDs was significantly increased. Our results provide basic understanding of the interaction between CQDs and DNA. Such fabricated CQDs-DNA might be of great benefit for the emerging nanomaterials based biosensing methods.  相似文献   

6.
Wu C  Zhou Y  Miao X  Ling L 《The Analyst》2011,136(10):2106-2110
A fluorescent biosensor for sequence-specific recognition of double-stranded DNA (dsDNA) was developed based upon the DNA hybridization between dye-labeled single-stranded DNA (ssDNA) and double-stranded DNA. The fluorescence of FAM-labeled single-stranded DNA was quenched when it adsorbed on the surface of graphene oxide (GO). Upon addition of the target dsDNA, a homopyrimidine·homopurine part of dsDNA on the Simian virus 40 (SV40) (4424-4440, gp6), hybridization occurred between the dye-labeled DNA and the target dsDNA, which induced the dye-labeled DNA desorbed from the surface of GO, and turned on the fluorescence of the dye. Under the optimum conditions, the enhanced fluorescence intensity was proportional to the concentration of target dsDNA in the range 40.0-260 nM, and the detection limit was found to be 14.3 nM alongside the good sequence selectivity.  相似文献   

7.
The absorption and fluorescence spectra, fluorescence quantum yields, lifetimes and time-resolved fluorescence spectra are reported for nine different fluorescent DNA-dyes. The work was initiated in search of a quantitative method to detect the ratio of single-to-double stranded DNA (ssDNA/dsDNA) in solution based on the photophysics of dye-DNA complexes; the result is a comprehensive study providing a vast amount of information for users of DNA strains. The dyes examined were the bisbenzimide or indole-derived stains (Hoechst 33342, Hoechst 33258 and 4',6-diamidino-2-phenylindole), phenanthridinium stains (ethidium bromide and propidium iodide) and cyanine dyes (PicoGreen, YOYO-1 iodide, SYBR Green I and SYBR Gold). All were evaluated under the same experimental conditions in terms of ionic strength, pH and dye-DNA ratio. Among the photophysical properties evaluated only fluorescence lifetimes for the cyanine stilbene dyes allowed a convenient differentiation between ssDNA and dsDNA. The bisbenzimide dyes showed multiexponential decays when bound to either form of DNA, making lifetime-based analysis cumbersome with inherent errors. These dyes also presented biexponential decay when free in aqueous buffered solutions at different pH. A mechanism for their deactivation is proposed based on two different conformers decaying with different kinetics. The phenanthridinium dyes showed monoexponential decays with ssDNA and dsDNA, but there was no discrimination between them. High dye-DNA ratios (e.g. 1:1) resulted in multiexponential decays for cyanine dyes, resulting from energy transfer or self-quenching deactivation. Shifts in both absorption and fluorescence maxima for both ssDNA and dsDNA DNA-cyanine dye complexes were small. Broadening of dye-ssDNA absorption and fluorescence bands for the cyanine dyes relative to dye-dsDNA bands was detected and attributed to higher degrees of rotational freedom in the former.  相似文献   

8.
Novel acridinium derivatives 1-3, wherein steric factors have been varied systematically through substitution at the ninth position of the acridinium ring, were synthesized and their interactions with single strand and double strand DNA have been investigated through photophysical, biophysical, and microscopic techniques. The acridinium derivative 1 exhibited quantitative fluorescence yields (phi f approximately =1) and high lifetime of 35 ns, while significantly lower fluorescence yields of 0.11 and 0.02 and lifetimes of 3.5 and 1.2 ns were observed for 2 and 3, respectively. The derivatives 1 and 2 having 2-methylphenyl and 2,4-dimethylphenyl substituents at the ninth position of the acridinium ring showed selective interactions with single strand DNA (ssDNA) with association constants of KssDNA = 6.3-6.6 x 10(4) M(-1), while negligible interactions were observed with double strand DNA (dsDNA). In contrast, the derivative 3 with 2,6-dimethylphenyl substitution showed negligible interactions with both ssDNA and dsDNA. Studies with a series of 19-mer oligonucleotides indicate that these derivatives exhibit significant selectivity for the sequences rich in guanosine (ca. 3-fold) as compared to the cytosine-rich sequences. These derivatives with high water solubility and the ability to distinguish between ssDNA and dsDNA through changes in fluorescence emission can be used as fluorescent probes for understanding the role of ssDNA in various biological processes and to study various DNA-ligand interactions.  相似文献   

9.
Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus(HIV) infection diagnosis.Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification(SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeficiency syndrome(AIDS) in the future.  相似文献   

10.
建立了一种基于阳离子型共轭聚合物和核酸适体的腺苷检测新方法. 荧光素修饰的短链DNA与腺苷的核酸适体部分互补, 形成双链DNA; 阳离子型共轭聚合物通过静电作用与双链DNA结合, 发生高效率的荧光共振能量转移(FRET). 加入腺苷后, 腺苷与核酸适体发生特异性结合, 导致双链DNA分解成单链, 使静电吸引力下降, 能量转移效率降低. 通过阳离子型共轭聚合物对单双链DNA的高效识别, 可快速简易地检测出腺苷.  相似文献   

11.
Homodimeric monomethine cyanine dyes as fluorescent probes of biopolymers   总被引:3,自引:0,他引:3  
The fluorescence properties of newly synthesized homodimeric monomethine cyanine dyes in the presence of biopolymers are investigated. They do not fluoresce in TE buffer and bidistilled water but become strongly fluorescent (Q(F)=0.3-0.9) in the region 530-650 nm when bound to dsDNA and ssDNA. The detection limit of dsDNA is about 1.7 ng/ml. Some of dyes studied are able to distinguish between dsDNA and ssDNA, RNA, BSA in solution and gel electrophoresis. The influence of different factors (temperature, pH and viscosity of the medium, presence of histone) on the formation of the dye-biopolymer complexes is investigated. The results of steady-state and dynamic fluorescence measurements concerning the different types of binding between dyes and biopolymers show that the new dyes are applicable in molecular biology as highly sensitive fluorescence labels.  相似文献   

12.
Zhang X  Zhao Z  Mei H  Qiao Y  Liu Q  Luo W  Xia T  Fang X 《The Analyst》2011,136(22):4764-4769
A novel fluorescence aptasensor based on DNA charge transport for sensitive protein detection has been developed. A 15nt DNA aptamer against thrombin was used as a model system. The aptamer was integrated into a double strand DNA (dsDNA) that was labeled with a hole injector, naphthalimide (NI), and a fluorophore, Alexa532, at its two ends. After irradiation by UV light, the fluorescence of Alexa532 was bleached due to the oxidization of Alexa532 by the positive charge transported from naphthalimide through the dsDNA. In the presence of thrombin, the binding of thrombin to the aptamer resulted in the unwinding of the dsDNA into ssDNA, which led to the blocking of charge transfer and the strong fluorescence emission of Alexa532. By monitoring the fluorescence signal change, we were able to detect thrombin in homogeneous solutions with high selectivity and high sensitivity down to 1.2 pM. Moreover, as DNA charge transfer is resistant to interferences from biological contexts, the aptasensor can be used directly in undiluted serum with similar sensitivity as that in buffer. This new sensing strategy is expected to promote the exploitation of aptamer-based biosensors for protein assays in complex biological matrixes.  相似文献   

13.
Huang CZ  Liao QG  Li YF 《Talanta》2008,75(1):163-166
With water-soluble anionic tetra (p-carboxyphenyl) porphyrin (TCPP) to solubilize multi-walled carbon nanotubes (MCNTs), we obtained a suspension that could be stable more than 1 week. With this TCPP/MCNTs suspension, we propose a spectrofluorometric method of DNA hybridization in this contribution. Our basic finding for this work is that the fluorescence from a dye-tagged single stranded DNA (ssDNA), which was directly added to the TCPP/MCNTs suspension, gets quenched, and the fluorescence could be remained if the dye-tagged single stranded DNA is first to be hybridized with its complementary target DNA to form a double stranded DNA (dsDNA) hybrid and added into the TCPP/MCNTs suspension. Mechanism investigations showed that the reason for the former is due to the adsorption of ssDNA on the surfaces of MCNTs, and that for the latter is due to the strong electrostatic repulsion force between the negative charge TCPP/MCNTs complexes and dsDNA. Thus, target DNA in a DNA sample and single-base mismatch in DNA sequences could be easily detected.  相似文献   

14.
利用示差脉冲伏安法研究了烟酰胺(NA)与小牛胸腺DNA在pH 8.0条件下相互作用的电化学行为.双链DNA(dsDNA)或单链DNA(ssDNA)的存在导致NA的峰电流明显降低且峰电位负移,表明NA与DNA发生相互作用,生成了复合物,且其作用模式主要是静电模式,但NA与dsDNA的相互作用强于与ssDNA的相互作用,可用于识别dsDNA和ssDNA.通过dsDNA加入前后峰电流的变化,计算得出NA与dsDNA结合常数β=4.946×10(11),结合位点数m=3.此外,NA的峰电流Ip与DNA质量浓度在1~14mg/L的范围内呈线性关系,线性回归方程为Ip(10-5A)=-0.03451cDNA(mg/L)+1.7408,相关系数R为0.9998.该法具有良好的回收率和选择性,可用于样品中DNA的测定.  相似文献   

15.
It is important to understand the formation of double-strand DNA (dsDNA) in a salt solution because it is one of the key reactions in life. A short cDNA strand pair was designed, and each single-strand DNA (ssDNA) was attached to a fluorescent dye that was either a donor or an acceptor of fluorescence resonance energy transfer. The fluorescence intensity was expected to change as time passed as the complementary pairs of ssDNAs formed dsDNAs. The concentration of dsDNA was theoretically calculated, and the measured data were consistent with theoretical results. The analysis of the nonlinear fitting method and the maximum entropy method detected that the reaction curve contains two major types of kinetics that likely represent the formation of dsDNA and mismatching.  相似文献   

16.
用紫外分光光度法和荧光光谱法研究了多柔比星( Adriamycin,ADM)稀土金属离子配合物(ADM-M)与DNA的相互作用.结果发现,在pH=7.0时,ADM与Eu3+、yb3+能形成稳定配合物,该配合物可使DNA的最大吸收产生明显的减色效应及红移,并能够竞争置换溴化乙锭(EB)与DNA的结合点.KI猝灭试验发现D...  相似文献   

17.
Novel tetracationic diviologen compounds of the general formula CH3(CH2)nV2+(CH2)6V2+(CH2)nCH3 (where V2+ = 4,4'-bipyridinium and n = 5 or 11) were investigated as electrochemical reporters of DNA duplex formation. These compounds bind to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) when the DNA is either present in solution or immobilized at electrode surfaces. Binding to thiolated ssDNA and dsDNA immobilized at Au electrodes was characterized using the electrochemical response for the reduction of the V2+ state to the V+ (viologen radical cation) state. An analysis of the charge for this reduction provided isotherms and binding constants for binding of these diviologens to both forms of immobilized DNA. Saturation of the binding is achieved at solution concentrations near 20 microM. For both the n = 5 and 11 diviologens, binding to ssDNA is driven by electrostatic charge neutralization. For the n = 11 case, the binding is cooperative. In the presence of dsDNA, the n = 11 diviologen exhibits a unique reduction potential for the V2+/+ redox couple that is shifted approximately 100 mV negative of that in the presence of ssDNA. This new electrochemical signature is attributed to the reduction of viologen groups bound in the minor groove of the DNA duplex. For dsDNA in solution, an increase in the thermal denaturation temperature (Tm) from 60 to 66 degrees C as a function of the n = 11 diviologen concentration confirmed its interaction with the duplex. Circular dichroism (CD) spectroscopy also was used to investigate the binding of both the V2+ and V+ redox states of the n = 11 diviologen to dsDNA in solution. For the V+ state, a CD signal was observed that is consistent with the presence of face-to-face pi dimers of the viologen groups. This unambiguously demonstrates the binding of this redox state of the diviologen in the dsDNA minor groove and the formation of such dimers in the minor groove.  相似文献   

18.
灿烂甲酚蓝在DNA修饰金电极上的电化学行为   总被引:1,自引:0,他引:1  
利用自组装技术将巯基乙醇固定在金电极表面形成巯基乙醇自组装膜修饰金电极, 用乙基-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为偶联试剂, 分别将鲱鱼精单链DNA(ssDNA)和双链DNA(dsDNA)固定于金电极表面形成ssDNA和dsDNA 修饰电极. 考察了灿烂甲酚蓝(BCB)在不同DNA 修饰电极上的电化学行为,结果表明, BCB 在ssDNA 和dsDNA 修饰电极上的吸附常数分别为1.67×10^4和3.22×10^4 L·mol-1, BCB 与ssDNA 主要以静电作用结合, 而与dsDNA作用存在静电和嵌插两种模式. dsDNA 对BCB 具有更高的亲和力, 使BCB 可以作为一种有效的电化学杂交指示剂.  相似文献   

19.
The adsorption of DNA on surfaces is a widespread procedure and is a common way for fabrication of biosensors, DNA chips, and nanoelectronic devices. Although the biologically relevant and prevailing in vivo structure of DNA is its double-stranded (dsDNA) conformation, the characterization of DNA on surfaces has mainly focused on single-stranded DNA (ssDNA). Studying the structure of dsDNA on surfaces is of invaluable importance to microarray performance since their effectiveness relies on the ability of two DNA molecules to hybridize and remain stable. In addition, many of the enzymatic transactions performed on DNA require dsDNA, rather than ssDNA, as a substrate. However, it is not established that adsorbed dsDNA remains in its structure and does not denature. Here, two methodologies have been developed for distinguishing between surface-adsorbed single- and double-stranded DNA. We demonstrate that, upon formation of a dense monolayer, the nonthiolated strand comprising the dsDNA is released and the monolayer consists of mostly ssDNA. The fraction of dsDNA within the ssDNA monolayer depends on the length of the oligomers. A likely mechanism leading to this rearrangement is discussed.  相似文献   

20.
In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)]2+ (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)]2+ is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)]2+ through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs–Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号