首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nile Red solvatochromism is used to monitor phase separation in concentrated poly(N-isopropyl acrylamide) (PNIPAm) aqueous solutions. Below the lower critical solution temperature (LCST), Nile Red molecules are in a polar environment and thus exhibit negligible fluorescence. Above the LCST, the aggregation of the PNIPAm chains into hydrophobic mesoglobules provides a nonpolar environment, causing a strong increase of fluorescence. The spectra show two emission bands, which can be related to the partitioning of Nile Red molecules between the core and the surface of the mesoglobules. More generally, the technique appears as a new and promising tool to probe microheterogeneities in polymer solutions or mixtures.  相似文献   

2.
An amphiphilic graft polyphosphazene (PNIPAm/EAB-PPP) composed of oligo-poly(N-isopropylacrylamide) (PNIPAm) as hydrophilic segments and ethyl 4-aminobenzoate (EAB) as hydrophobic groups was synthesized via ring-opening polymerization and subsequent substitution reaction. The molar ratio of the PNIPAm segment to EAB group was 1.85:0.15. The lower critical solution temperature (LCST) of copolymer was 32.6 degrees C as determined by turbidity method. Micellization behavior of PNIPAm/EAB-PPP in an aqueous phase was characterized by fluorescence technique, 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration (CMC) of the graft copolymer in aqueous solution was 0.1mg/ml. The number-averaged particle size of spherical micelles was 80 nm at 25 degrees C with a narrow distribution. TEM also revealed that inter-micellar aggregation was induced in the micelle solution at temperature above LCST of graft copolymer. The thermosensitive PNIPAm/EAB-PPP micelles may be of help to regulate the loading and release of hydrophobic drugs.  相似文献   

3.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

4.
Crystallization behavior of soft, attractive microgels   总被引:2,自引:0,他引:2  
The equilibrium phase behavior and the dynamics of colloidal assemblies composed of soft, spherical, colloidal particles with attractive pair potentials have been studied by digital video microscopy. The particles were synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAm), acrylic acid (AAc), and N,N'-methylene bis(acrylamide) (BIS), yielding highly water swollen hydrogel microparticles (microgels) with temperature- and pH-tunable swelling properties. It is observed that in a pH = 3.0 buffer with an ionic strength of 10 mM, assemblies of pNIPAm-AAc microgels crystallize due to a delicate balance between weak attractive and soft repulsive forces. The attractive interactions are further confirmed by measurements of the crystal melting temperatures. As the temperature of colloidal crystals is increased, the crystalline phase does not melt until the temperature is far above the lower critical solution temperature (LCST) of the microgels, in stark contrast to what is typically observed for phases formed due to purely repulsive interactions. The unusual thermal stability of pNIPAm-AAc colloidal crystals demonstrates an enthalpic origin of crystallization for these microgels.  相似文献   

5.
共聚N-异丙基丙烯酰胺单链微凝胶   总被引:2,自引:0,他引:2  
聚 N -异丙基丙烯酰胺 (PNIPAM)的水溶液具有下临界共溶温度 LCST(约 3 2℃左右 ) ,即当体系温度高于 3 2℃时 ,高分子链的构象发生 Coil- to- Globule的变化 [1~ 3 ] ,而由 N -异丙基丙烯酰胺制备的水凝胶亦存在体积相转变 ,该转变与网络链的构象变化相关 ,文献 [1 ,4,5 ]对从大块凝胶到微米级凝胶的性质进行了研究 .本文成功地制备了聚 N -异丙基丙烯酰胺的单链微凝胶 ,与相应的线性高分子在分子量和化学组成上完全相同 ,初步研究了它们与十二烷基硫酸钠 (SDS)的混合水溶液的粘度性质 ,从而在两者之间建立了直接而明确的联系 .1…  相似文献   

6.
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N′-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and 1H-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm. 1H-NMR experiments also inferred that the methyl proton of N-isopropylacrylamide appeared three peaks and responded to hydrogen-bonding interaction including polymer chain with water molecular, intramolecular interaction and intermolecular interaction, respectively.  相似文献   

7.
Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm)-encapsulated polystyrene latex was prepared via a layer-by-layer self-assembly of cationic and anionic polyNIPAms alternately. Studies showed that the size of PNIPAm-encapsulated polystyrene particles (m-PS) increased with the encapsulation manipulation, as verified by both transmission electron microscopy and dynamic light scattering measurements. The m-PS underwent a dramatic volume decrease at the lower critical solution temperature (LCST) of PNIPAm, with the onset temperature shifting to a higher temperature range as the number of encapsulating layers increased. A qualitative study on the adsorption behavior of Ag nanoparticles revealed that while the pristine (p) Ag nanoparticles were predominantly adsorbed on the m-PS below the LCST, the hydrophobically modified one (m-Ag) was preferentially adsorbed on the same PS above the LCST, which corresponded to the hydrophilic to hydrophobic transition of the m-PS at the LCST.  相似文献   

8.
基于聚N-异丙基丙烯酰胺的细胞智能分离材料   总被引:1,自引:0,他引:1  
刘丹  王涛  刘新星  王朝阳  童真 《化学进展》2011,23(11):2353-2359
聚 N -异丙基丙烯酰胺(PNIPAm)在水中是具有温度响应性的智能高分子材料,可用于细胞培养和自动脱附。本文从材料的制备方法出发,介绍了电子束照射接枝、等离子体处理接枝、表面活性自由基聚合、水凝胶等方法制备的材料对细胞培养及脱附的影响;阐述了细胞的脱附机理;讨论了加快细胞脱附的方法,包括共聚改性PNIPAm、PNIPAm接枝多孔膜、聚乙二醇(PEG)共聚PNIPAm接枝多孔膜、聚偏氟乙烯(PVDF)膜辅助细胞转移。从PNIPAm温敏性材料表面智能分离得到的细胞片因结构完整并保留了细胞外基质成分,在组织修复中得到了应用。  相似文献   

9.
In the present study, we report a method for preparing a fluorescent thermosensitive hybrid material based on monodisperse, thermosensitive poly( N-isopropyl acrylamide) (PNIPAM) microgels covered with CdTe nanocrystals of 3.2 nm diameter. The CdTe nanocrystals were covalently immobilized on the surface of PNIPAM microgels. The chemical environment around the CdTe nanocrystals was modified by changing the temperature and inducing the microgel volume-phase transition. This change provoked a steep variation in the nanocrystal photoluminescence (PL) intensity in such a way that when the temperature was under the low critical solution temperature (LCST) of the polymer (36 degrees C) the PL of the nanocrystals was strongly quenched, whereas above the LCST the PL intensity was restored.  相似文献   

10.
杜滨阳 《高分子科学》2011,29(4):439-449
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N-isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-co-AM-co-TMSPMA) microgels were prepared via two different methods. The first method was that the microgels were post-fabricated from the crosslinkable linear P(NIPAM-co-AM-co-TMSPMA) terpolymer aqueous solutions above the lower critical solution temperature (LCST) of the terpolymer. For the second method, the microgels were directly synthesized by conventional surfactant free emulsion copolymerization of NIPAM, AM, and TMSPMA. The hydrodynamic diameter and stability of the resultant P(NIPAM-co-AM-co-TMSPMA) microgels strongly depend on the pH and temperature of the microgel aqueous solution. The hydrodynamic diameters of the microgels decreased with increasing the measuring temperature. The phase transition temperature of the microgels was found to be around 34°C, which was independent of the initial terpolymer concentration and shifted to lower temperature with increasing the preparation temperature. Increasing the initial amount of AM will enhance the instability of the microgels at high pH values. Moreover, the P(NIPAM-co-AM-co-TMSPMA) microgels obtained from the linear terpolymer had more homogeneous microstructures as compared with the corresponding NIPAM/AM/TMSPMA microgels prepared by one step emulsion copolymerization as revealed by light scattering measurements.  相似文献   

11.
By utilizing the hydrolysis and condensation of the methoxysilyl groups, thermo-sensitive organic/inorganic hybrid poly[ N-isopropylacrylamide- co-3-(trimethoxysilyl)propylmethacrylate] [P(NIPAm- co-TMSPMA)] microgels were successfully prepared via two different methods without addition of any surfactant. First, the microgels were obtained by a two-step method; that is, the linear copolymer P(NIPAm- co-TMSPMA) was first synthesized by free radical copolymerization, and the aqueous solution of the copolymer was then heated above its low critical solution temperature (LCST) to give colloid particles, which were subsequently cross-linked via the hydrolysis and condensation of the methoxysilyl groups to form the microgels. Second, the microgels were also prepared via conventional surfactant-free emulsion polymerization (SFEP) of the monomers NIPAm and TMSPMA. TMSPMA can act as the cross-linkable monomer. No surfactant was involved in the preparation of the hybrid microgels. The obtained microgels were rather spherical and exhibited reversible thermo-sensitive behavior. The size, morphology, swellability, and phase transition behavior of the microgels were dependent on the initial copolymer or monomer concentration, preparation temperature, and the content of TMSPMA. The size of microgels obtained by SFEP was found to be more uniform than that by the two-step method. The hybrid microgels obtained by these two methods had more homogeneous microstructures than those prepared via conventional emulsion polymerization with chemical cross-linker N, N'-methylene-bisacrylamide.  相似文献   

12.
The interfacial properties of end-grafted temperature-responsive poly(N-isopropylacryamide) (PNIPAM) were quantified by direct force measurements both above and below the lower critical solution temperature (LCST) of 32 degrees C. The forces were measured between identical, opposing PNIPAM films and between a PNIPAM film and a lipid membrane. At the grafting densities and molecular weights investigated, the polymer extension did not change significantly above the LCST, and the polymers did not adhere. Below the LCST, the force-distance profiles suggest a vertical phase separation, which results in a diluter outer layer and a dense surface proximal layer. At large separations, the force profiles agree qualitatively with simple polymer theory but deviate at small separations. Importantly, at these low grafting densities and molecular weights, the end-grafted PNIPAM does not collapse above the LCST. This finding has direct implications for triggering liposomal drug release with end-grafted PNIPAM, but it increases the temperature range where these short PNIPAM chains function as steric stabilizers.  相似文献   

13.
Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 microm and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm- co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of double oil-in-water-in-oil (o/w/o) emulsion. It is facilitated by adjusting the balance of the interfacial tensions between the aqueous phase (in which a water-soluble drug may be dissolved), the monomer phase and the continuous phase. The water-in-oil (w/o) droplets containing 26 wt% NIPAm and Am monomers, 0.1 wt% Tween-80 surfactant, FITC fluorescent dye and colloidal gold nanoparticles spontaneously developed a core-shell morphology that was fixed by in situ photopolymerization. The results demonstrate new reversibly swelling and deswelling AuNP/PNIPAm hybrid core-shell microcapsules and microgels that can be actuated by visible light and/or microwave radiation (相似文献   

14.
Temperature-sensitive hybrid microgels with magnetic properties   总被引:4,自引:0,他引:4  
In the present paper, we report the preparation of hybrid temperature-sensitive microgels which include magnetite nanoparticles in their structure. Polymeric microgels have been prepared by surfactant-free emulsion copolymerization of acetoacetoxyethyl methacrylate (AAEM) and N-vinylcaprolactam (VCL) in water with a water-soluble azo-initiator. The obtained microgels possess a low critical solution temperature (LCST) in water solutions, with a rapid decrease of the particle size being observed at elevated temperatures. Magnetite was deposited directly into microgels, leading to the formation of composite particles which combine both temperature-sensitive and magnetic properties. The influence of magnetite load on microgel size, morphology, swelling-deswelling behavior, and stability is discussed.  相似文献   

15.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   

16.
Temperature-sensitive hydrogels have been widely used for rapid adaptive cooling in electronic device thermal management with promising applications. However, existing temperature-sensitive hydrogels can only regulate the flow in the chip cooling system after the ambient temperature reaches their lower critical solution temperature (LCST). Before reaching LCST, effective rapid heat dissipation for electronic chips is not achievable. This study aims to develop a temperature-sensitive hydrogel that can provide assisted adaptive cooling for electronic chips before reaching its LCST. This requires the hydrogel to have a thermal conductivity far surpassing existing hydrogel materials. Using the temperature-sensitive hydrogel PNIPAm and graphene molecules as base materials, this research utilized molecular dynamics simulations to graft graphene molecules onto PNIPAm molecules in different ways, resulting in the temperature-sensitive hydrogel material PNIPAm-g-graphene. Non-equilibrium molecular dynamics (NEMD) was employed to calculate the thermal conductivity of this material under different temperature conditions. The results indicate that the thermal conductivity of PNIPAm-g-graphene can reach up to 1.95474 W/m K (graphene grafted at  CH3 functional group, temperature at 280 K). Compared to the thermal conductivity of PNIPAm under the same conditions (0.45 W/m K), the increase in thermal conductivity is significant, demonstrating excellent thermal conductivity compared to PNIPAm. Subsequently, this study analyzed the underlying mechanisms of different thermal conductivities in materials obtained by grafting graphene molecules at different points using the method of overlap in Phonon Density of States Curves (PDOS) from the perspective of interfacial thermal conduction. Finally, through computational fluid dynamics (CFD) simulations, this study investigates the chip's adaptive cooling performance with PNIPAm-g-graphene material. The results show that, compared to traditional temperature-sensitive hydrogels, PNIPAm-g-graphene can achieve efficient adaptive cooling of chip hotspots before the cooling fluid temperature reaches its LCST value. This finding is significant for the field of chip cooling. The study proposes a new method for rapid, adaptive cooling of chip hotspots and explores its feasibility from the perspectives of molecular dynamics and CFD simulation. It holds importance in the thermal management of electronic devices and the rapid adaptive cooling of electronic chips.  相似文献   

17.
Linear and crosslinked polymers based on N‐isopropylacrylamide (NIPAAm) exhibit unusual thermal properties. Aqueous solutions of poly(N‐isopropylacrylamide) (PNIPAAm) phase‐separate upon heating above a lower critical solution temperature (LCST), whereas related hydrogels undergo a swelling–shrinking transition at an LCST. A linear copolymer made of NIPAAm/acryloxysuccinimide (98/2 mol/mol) and two hydrogels with different hydrophilicities were prepared. Fourier transform infrared (FTIR) spectroscopy was employed to determine the transition temperature and provide insights into the molecular details of the transition via probing of characteristic bands as a function of temperature. The FTIR spectroscopy method described here allowed the determination of the transition temperature for both the linear and crosslinked polymers. The transition temperatures for PNIPAAm and the gel resulting from the crosslinking with polylysine or N,N′‐methylenebisacrylamide (MBA) were in the same range, 30–35 °C. For the gels, the transition temperature increased with the hydrophilicity of the polymer matrix. The spectral changes observed at the LCST were similar for the free chains and the hydrogels, implying a similar molecular reorganization during the transition. The C H stretching region suggests that the N‐isopropyl groups and the backbone both underwent conformational changes and became more ordered upon heating above the LCST. An analysis of the amide I band suggests that the amide groups of the linear polymer were mainly involved in hydrogen bonding with water molecules below the LCST, the chain being flexible and disordered in a water solution. During the transition, around 20% of these intermolecular hydrogen bonds between the polymer and water were broken and replaced by intramolecular hydrogen bonds. Similar changes were also observed at the LCST of a gel crosslinked with MBA. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 907–915, 2000  相似文献   

18.
The flocculation behavior of poly(N-isopropylacrylamide) (pNIPAM) microgels containing polar -(OCH(2)CH(2))(3)OH chains, incorporated by the copolymeric components (triethyleneglycol methacrylate, TREGMA), in aqueous NaCl solution was investigated. Determination of the critical flocculation temperatures (CFTs) and the critical flocculation concentrations (CFCs) of the microgels at 45 degrees C shows that polar -(OCH(2)CH(2))(3)OH chains have different influence on the flocculation behavior of the microgels at temperatures below and above their volume phase transition temperatures (VPTTs). The flocculation of the microgels becomes more difficult with the increase of -(OCH(2)CH(2))(3)OH chains below the VPTT. In contrast, the microgels flocculate more easily with more -(OCH(2)CH(2))(3)OH chains above the VPTT. Preliminary investigation on the flocculation kinetics of the microgels further shows that -(OCH(2)CH(2))(3)OH chains have different effects on the flocculation rate at temperatures below and above the VPTT. The flocculating rate of the microgels at 25 degrees C decreases with the increase of -(OCH(2)CH(2))(3)OH chains. While the flocculation rate at 45 degrees C increases with the increase of -(OCH(2)CH(2))(3)OH chains due to their enrichment on the surface of the microgels as a result of the temperature-induced volume-phase transition, which was verified by variable temperature (1)H NMR spectroscopy. The polar -(OCH(2)CH(2))(3)OH chains rich in the surface increase the attractive force between the microgels, promoting the flocculation.  相似文献   

19.
The interaction forces between poly(N-isopropylacrylamide) (PNIPAAm)-grafted surfaces and colloidal particles in an aqueous solution were investigated using an atomic force microscope. Measurements were conducted between smooth silicon wafers on which PNIPAAm was terminally grafted and silica particles hydrophobized with a silanating reagent in an aqueous electrolyte solution under controlled temperature. Below the lower critical solution temperature (LCST) of PNIPAAm, there were large repulsive forces between the surfaces, both on approach and separation of the surfaces. On the other hand, above LCST, attractive forces were observed both in approaching and in separating force curves. When surface hydrophobicity of the particles increased, the maximum attractive force tended to increase. The changes of hydration state of the grafted PNIPAAm chains depending on temperature are considered to greatly alter the interaction force properties. The role of the intermolecular interaction between the PNIPAAm chains and the hydrophobic particles in the interaction forces is discussed.  相似文献   

20.
Organic-inorganic composites were prepared with titanium dioxide (TiO2) nanoparticles embedded within colloidal particles of a cross-linked, thermally responsive polymer. To promote the incorporation of unaggregated nanoparticles of TiO2, temperature responsive microspherical gels (microgels) of N-isopropylacrylamide (NIPAM) with interpenetrating (IP) linear chains of poly(acrylic acid) (PAAc) were synthesized. Dynamic light scattering (DLS) measurements revealed that these microgels reversibly shrink and swell in diameter from 300-400 nm to 600-800 nm with temperature. Two types of nanoparticles of TiO2 were immobilized within the IP-microgels-fine TiO2 nanoparticles synthesized by the hydrolysis of titanium(IV) isopropoxide and commercially available Degussa P25. Characterization of the composite was conducted using transmission electron microscopy (TEM) and UV-vis absorption spectroscopy from which it was determined that the extent of loading of the TiO2 within the colloidal particles can be easily manipulated from a low value of 10% (weight) to a value as high as 75%. The TiO2 nanoparticles were in a dispersed state within the microgels and the composites showed rapid (approximately minutes) sedimentation, which is useful for gravity separations. By using turbidometry to characterize the settling behavior of the organic-inorganic composites, it was found that the settling time decreases as the content of TiO2 increases within the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号